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ABSTRACT

A theoretical study was performed to define the response of a cohesion-
less sand of medium density to different rates of loading. The deformation
properties were assumed to be represented by two nonlinear curves representing
axial strain vs. the deformation modulus and axial strain vs. the lateral
strain ratio. A theoretical analysis was performed to support this assump-
tion. The general case of finite deformation was considered,

The problem investigated was the penetration of a rigid plate into a
vertical surface bounded by a horizontal surface. The force deformation his-
tories under different rates of loading were obtained, as well as the stress
distribution in the soil mass. An empirical formula, based on theoretical
results, was suggested to relate the ultimate load to the rate of loading.

An elasto-plastic analysis was also suggested.

An iterative process using the point relaxation technique was

utilized to solve the nonlinear equations, A computer program was written

for that purpose,
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CHAPTER I

INTRODUCTION

Flights with manned spacecraft in the United States have in the past
been terminated on water, although considerations have been given to recoveries
on land, Furthermore, it is recognized that the craft would most probably
impact on land rather than on water in the case of an abort immediately after
lift-off from the launching pad. It is also known that flights to other
planets will experience landings on solid or semi-solid materials. For these
and other reasons it is of interest to study the characteristics of dynamic
impact between solid bodies and soils.

It can be expected that there would exist a large range of angles of
impact of the spacecraft with soils masses., For this reason it is of interest
to determine impact characteristics for the full range of impact angles be-
tween horizontal and vertical, It is the purpose of this study to investigate
the characteristics of horizontal impact although the procedures developed in
this study could be used to analyze vertical as well as horizontal impact.
With minor changes the procedures of the solution could be adapted for consi-
derations of inclined impacts, These adaptations would involve the resolution
of body forces from the weight of the soil into components parallel and normal
to the direction of impact.

Research on dynamic loading on soils is evidenced by many published
papers on the interaction between structural foundations and soils when the
structure has been subjected to dynamic loading generated by an earthquake
or by a blast. There is also available in the literature certain information

on the effect of repeated loadings on soils. -However, in the problem of



horizontal impact on soils which is considered here, published analytical
information is practically nonexistent,

In most soil mechanics problems dealing with stress distribution in a
soil mass, the inertia effect in the soil has been neglected due to the fact
that such problems deal with slowly applied loads, or the so-called "static"
loads, 1In addition it is assumed that displacements within the mass are small
and the material may be considered to behave elastically, With increasing
rates of loading the static solution will continue to be wvalid only if dis-
placements in the soil mass vary linearly with time, causing inertial forces
to vanish, This would not be valid for nonlinear materials such as soils,

In some investigations the modulus of elasticity is allowed to vary
with the strain level. These investigations consider the generalized Hooke's
law, and the soil is considered to be nonlinearly elastic material.

The first objective of this study of load-deformation of soils is
to consider the general case which takes into account inertial effects. The
second objective is to consider the general case of finite deformation in
contrast to the infinitesimal deformations., The third objective is to obtain
a generalized modulus of deformation, E', and a generalized lateral strain
ratio, _v', both depending on the strain level, A stress-strain analysis is
developed to show that the nonlinear behavior of the material could be incor-
porated by E’ and v’. The fourth and final objective, which is a by-product
of the first three, is to determine the response of ;he material to varying
rates of loading.

This study considers plane strain only. All objects penetrating the
soil are assumed to have infinite dimensions in a third direction, where
strains are considered to be zero. The problem might be generalized to a

three dimensional case but, for the method of solution used in this study,



this generalization would require larger computer storage and excessive
amounts of computer time,

A listing of the computer program is given together with a flow chart
and input guide., Because of the large size of computer output, a complete
output is not included. The significant results, however, are presented

through several tables and figures.



CHAPTER 1I

STRESS~STRAIN RELATIONS

In the case of elastic, homogeneous, and isotropic bodies and with
small deformations which satisfy the assumption of the linearized Hooke's Law,
the system of stresses and strains are completely defined by two independent
elastic constants, The modulus of elasticity E and Poisson's ratio Vv are
generally used as the constants, together with other conditions to insure
uniqueness of the solution,

The purpose of this chapter is to consider the general case of stress~
strain relationship, which will lead to the conclusion that for the system on
hand, where finite deformations are considered, stresses and strains could
also be defined by two functions E' and v'. E’ and v’ are functions
of the state of strain. The term strain as used in this text refers to change
in size and shape in general, whether recoverable or not. It will be also
assumed that the system has an initial unstressed and unstrained state which
implies the state of stress is a function of the state of strain only. The
assumption of isotropy still holds. The system does not have to be homogeneous
since the nature of the functions E’ and v’ could be varied at different
points inside the system using numerical techniques, Needless to say, the
conditions of uniqueness of solution should also be satisfied.

In deriving a stress-strain relation, it can be written in general

that stress is a function of strain,

o,.=f (eij) (2-1)

where



cij stands for the stress tensor and
eij stands for the strain tensor.

Beginning with Eq 2-1, the reasoning suggested by Reiner (12) will be
followed and it will be noted that Eq 2-1 involves the second rank stress
tensor cij' If it is attempted to develop the function £ (eij), all the
terms on the right hand side of Eq 2-1 must be mixed tensors of rank 2 multi-
plied by the inner products or scalers, and the general expansion of the funec-

tion £ (eij) would be,

= + ,
O3 = Fo 8y T &y T Fy &y €y T F3 Gy 6y &

o Infinite number of terms, (2-2)

F are constants or functions of the strain invariants. The

Fp» Fps Fy

term aij is known as Kronecker delta and it has the following values:

by = 0 i

Making use of the Cayley-Hamilton Equation (9), it can be shown that:

ekj esk eis = eij J3 - eij .J2 + ekj <-:ik J1 (2-3)
and therefore
®ej sk ®ms %im = Okj ik 93 T %kj Cik Y2t Sy Ssk Cis 1
=650 F I3t ey Uy I) ke ey (3,% - 3 (2-4)
where
Jl’ JZ’ and J3 are the first, second and third invariants of

the strain tensor,



Jl = ésk sks
JZ =-1/2 ®sk ks
J3 = 1/3 esk ems ekm

Similarly the higher order terms can be expressed in terms of eij

e, and € so that

ik kj

Oij = FO éij + Fl eij + F2 ekj eik (2-5)

FO’ F and F are different from those in Eq 2-2., F

1 2 F and F are

0 1 2
either constants or functions of the three invariants of the strain tensor.

In this study consideration is given to active loading only, thus the

unloading effect may be disregarded and Eq 2-5 can be written as:

i3 = F1 eij + F2 ekj €k (2-6)
Use is made of the relation
ekJ eik = ¢ij J3 - 6ij J2 -+ eij J1 2-7)

where the tensor ¢ij is defined as:

%ej Sk = Oij (2-8)

It can be shown for plane strain problems that J3 vanishes, and Eq 2«6

becomes

o,.=F e . +F, (eij 3, - 6ij J)) . (2-9)

The stress cij is resolved into its isotropic and deviatoric

components;



where

then

7
€, .,
1]

(2]
o
[

¢ di ‘ ii 2N
o=F 3 tF (Jl -3 )
1
Sij K1 (e,j) + K, (J eij - 2/3 J2 6ij)

is the isotropic component of stress

is the deviatoric component of stress,

J
/ ’ r 2
GX = 011 = (Fl + F2 Jl) (e) - F2 3

- r - ) - 1
+ Kl (ell e) + K2 L Jl (e11 e) 2/3 J2 (

.
7 7 i
GX—[(FI SR 4 (F, - K I et (K +K, )

eX - (F2 + K2) Jz
I !
cy-{_(Fl - K,) + (F K2)J11e+(K + K, J))
€y - (F2 + KZ) J2
o =1i( - K,) + (F K)J-}e F, " +K)J
z V1 1 27 71 4 2 27 72

(2-10)



(K1 + K2 Jl)
cxy - (Kl + KZ Jl) YXy - 2 exy
where
Cxy
ny= 2
e=¢€ + ¢
X y
/eii ’
Fy elJ=F1 - *tK o
®ii
- ¢ _11 ’
F, ° 5 F," 5= +K, e 5
FZ/
F2='—3—+(2/3) K2
Simplifying the notations, Eq 2-10 is written as:
o =ae + 28 € - K'JZ (a)
c =axe+2PBe -XJ b
g B e, " (b)
(2-11)
Gz=ote-?(J2 (e)
ny =B exy (d)
where
1 s 1 1
o= £ (F1 s Kl s F2 s K2 , Jl) = f (Jl, JZ)
B=f !

(Kl’ KZ’ Jl) = £ (J13 JZ)

' 11717
X=f (F,", K,)) = £ (I Iy

Equation 2-11 is similar to the classical equations of the theory of

elasticity except that the constants are functions of the first and second



invariant of the strain tensor. In comparison to the elasticity equations,
o corresponds to Lame’ constant A, and B corresponds to the shear modulus

G.

¥ . 4 '
Determination of E and v

The understanding of deformation properties of soils is of great
importance to this problem. Any rational solution, regardless of how sophis-
ticated that solution might be, remains as a crude approximation if the defor~
mation properties are not well known, One step taken in this study for under-
standing real soil behavior is the considerat;on of finite deformation. The
next step was to obtain E’ and v’ as a function of some deformation index.
Since the two functions depend on the invariants of strain, then the ideal
thing would be to obtain E’ and v’ as functions of these invariants. Such
process, however, is hard to achieve since it involves many parameters., The
anatomy of finite deformation has been described by Reiner (12) and Novozhilov
(10). Reiner obtained five parameters which are constants or functions of the
invariants of strain tensor. Novozhilov obtained six physical constants, The
relations described by Novozhilov take the following form for a plane strain

case:

_E 3 V a
%% = THv { Aty I Y0 e+ T ys 0y

! a2 a N3
-2yttt I Ty, e F 1/4 exy , } (2-12)

= _E | 2 :
Oy T Ty L AT Y I Y, I &y T Y4 1 [ (e, * e

ey ]} (2-13)

E, v, Yi» Yp» Y3s Y, are six physical constants of which the

last five are dimensionless,



10

Iy

]

2
e ey - 1/4 (exy )
It can be noticed that the definition of o in Eq 2-13 is similar

to that of Eq 2-11 if it is considered that

('I%; ) (1 + Yl le + Yo Jz) =2 B (Jl’ Jz) (2-14)
and

[ E O N

\T5 /(T J 9 = ¢ O 3 (2-15)
and

E ¢

1 3 2 2\ 2
T \ Y3 9y - @yg vy Ty Iy J, ty, Iy (e F /A e )
=-X (3, 1) (2-16)

The constants E and v multiplied by some function of Jl and

Jz as in Eqs 2-14 and 2-15 are defined by new functions E’ and v'. The

functions E’ and v’ depend on the state of deformation and hence on the

invariants Jl and JZ. Therefore P and « are defined as:

B = E?T;;#T.z G (2-17)
E' v’
=Ty a-vy - A (2-18)

The term J2 is a measure of octahedral shear strain. This quantity
is assumed to be small enough so that X JZ in Eq 2-11 is eliminated. This

assumption is justified for stresses below yielding.
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Equation 2-11 can therefore be written as

Gx = Ae+ 2G €, (a)
g = he+ 2G € b
v e y (b)
(2-19)
o, = Ae (c)
ch=Ge:Xy (d)

where A and G are defined as in Eqs 2-17 and 2~18.

Reiner's five parameters or Novozhilov's six parameters are difficult
to obtain in the laboratory. One way to approximate reality is to obtain E’
and v’ as functions of the axial strain €. Many factors affect the defor-
mation behavior of soil., Among those many factors are:

1. Type of soil

2. Moisture content

3. Confining pressure

4. Density

5. Rate of loading

6. Type of test

7. Grain size,

Experimental tests reported by Barkan (2) indicated that the modulus
of deformation for sands does not depend on the moisture content or grain size.
In this study the rate of loading may have some effect on the deformation func-
tions E’ and v’ since the time period during which the load is applied wvaries
from low to high rates of loading. In this analysis the values used for the
functions E’ and v’ are those for low rate (static) loading corresponding

to a strain rate of 0,625% per minute, The confining pressure and density
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also have a marked effect on E’ and v'. Ghazzaly and Dawson (3) obtained

' and v’ as functions of axial strain for sands of densities 94 pcf,

E
102 pcf and 108 pcf. For each of those densities four states of confining
pressures were used,

Since the above curves were obtained for a low strain rate, the strain
rate effect, or in other words, the inertia effect, can be neglected and the
values are considered to correspond to the so-called static test. A truly
static test corresponds to zero rate of loading which is practically impossi=
ble to obtain, and it can be concluded that the inertia of the specimen exists
in any test, TFor a nonlinear material such as soil the rate of loading is
expected to have a marked effect on the deformation curves which implies that
for each rate of loading analyzed, a different deformation curve has to be
used. Any dynamic test, that is for high rates of loading, should consider
the inertia of the specimen. If the mass of the test apparatus is large, the
inertia of the apparatus should also be considered.

A detailed discussion of the factors which affect the function E’
and v’ are discussed in Ref. (3). The main purpose of this section is to
point out the uncertainties involving these two functions. The determination

’ and v’ was based entirely on the work done by Ghazzaly and Dawson

of E
which is described in Ref. (3).

The ultimate load capacity as used in this analysis refers to the
state of deformation at which material resistance decreases or ceases to
increase with further deformation applied at the boundary. The process to
determine the ultimate resistance is simply to obtain the resistance at each

time until the load deformation curve becomes flat or changes the sign of

slope. 1t is therefore assumed that the modulus of deformation E’ and the
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lateral strain ratio Vv’ represent the material behavior at any state of
deformation.

A sixth order polynomial was used to describe the modulus of defor-
mation vs. axial strain curve and a fourth order polynomial was used to
describe the lateral strain ratio vs. axial strain curve. Both curves
correspond to a confining pressure of 2,32 psi. The range of strains used
are from 0.001 to 0.1 in/in. for a sand with a density of 102 pcf. The
curves are shown in Figs, 2-1 and 2-2. The curves indicate that by increase
in deformation the modulus of deformation E’ will decrease while the
lateral strain ratio v’ will increase. A least-squares curve-fit program
was used, and therefore, for a particular strain, the relations take the

following forms:

1 2 3 4
E = aO + a; ex + a, ex + ag € + a, ex
B (<]
+ ag €. + ag €X (2-20)
o 2 3 4 _
vio= b0 + b1 €, + b2 €, + b3 e ” + b4 €, (2-21)

where

/

E is the modulus of deformation
v/ lateral strain ratio.

The coefficients of the above equations depend on the type of soil

considered, For the material under study the following values were used:

a, = 2.7139 x 10° by = 23,875 x 107°
a; = -27.227 x 104 by = 46.742
a, = 13,213 x 10° b, = -19.77 x 10°
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a, = -32.679 x 107 b, = 29.88 x 102

= 41.633 x 108 b -14.841 x 10%

]

a, = -25.851 x 10°
a, = 61.38 x 10°
The maximum value of E’ could not be more than 2713.9 psi and the

minimum value of Vv’ could not be less than 0.23875 or more than 0.5,

Strains*

The strains ¢ , €, &€ are defined as follows:
X y xy

e, = u - 1/2 (uX? + vxz) (a)

= - 2 2 -
ey vy 1/2 (Vy + ug ) (b) (2 22)
exy = (uy + vx) - (uy u_ + vy vx) (c)

where u and v are the displacements in the x and y directions., The
above definitions arise from the actual state of deformation in a plane strain

case,

Equilibrium
In the problem under consideration the displacements are specified at
the boundary at any instant of time; therefore for a unique solution the condi-

tions of equilibrium have to be satisfied, namely

*Definitions are derived in Appendix A,
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+ 0 + F
YY,y Xy,%x y

i
©
<

or
a—{()\+2G)(u - 1/2 (u2+v2)]
3 X b4 X
X
+x[ -12[.2+ 21}
Vy / (vy uy)
+G§—[(u +v)-uu-vv]=pff-F
Lol y X y X y X X
and

g—y{ (\ + 2G) l__ vy - 1/2 (vya + uyg) ]
+ X.[ u - 1/2 (ux2 + vxz) }‘}
+ G %— [ (uy + vX) - U u sV Y ] =pv-F
X

Carrying out the differentiation of the above two equations, they can

be written as,
(A + 26) [ U (1 - uX) = Ve Vex ] + (A + G) [ ny a - vy)
- U u } + G [ - 1 - w) - oy Vx } =pdu - F_ (2-23a)
(A + 26) [ Vyy (1 - Vy) - uy uyy ] + (A+ G) [ uxy (1L - ux)

- vy vXy ] + G [ Vox (1 - Vy) -u uy ] =p Vv - Fy (2-23b)
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Equations 2-23, a and b should be satisfied at each point inside the

region, subjected to certain boundary conditions. 1In the case of infinitesimal
deformation the strain products in Eq 2-23 would vanish, The resulting equa~

tions would be linear. The form of such equations is derived in Appendix B.,.



CHAPTER II1I1

BOUNDARY CONDITIONS FOR TYPICAL PROBLEMS

It has been stated that thé purpose of this study is to obtain the
displacement and stress diétribution in a soil mass due to the penetration of
a rigid body at the contact surface., The body is assumed to be infinitely
long in the Z direction, No displacements are allowed in the Z direction
and all the problems to be solved are of the plane-strain type of problem.
The penetrating body could be a plate, wedge or a cylinder.

Figures 3-1 through 3-6 illustrate six different problems. A plate
is used to represent the rigid body in these figures. The plate is assumed
very thin and infinitely rigid. 1In all these problems the contact surface
is 8. The bearing length L of the contact surface is constant for the
case of the plate, The bearing length L changes at each stage of deforma-
tion in the case of a wedge or a cylinder as illustrated in Figs. 3-7 and 3-8,
In all the problems, it is required to obtain the displacement and stress
distribution throughout the region R, The sense of the coordinate system
depends upon whether the rigid body is penetrating a vertical or a horizontal

surface.

Problem 1, Penetration of a rigid plate into a vertical surface,

bounded by a horizontal surface at the edge of the plate, Fig. 3.1.

The boundary conditions are:

Boundary Conditions Locations
u=f (y, t) x=0 y s L
v=1f (y, t) x=0 y s L
u=0and v =0 x = 2L

0 and v 2L

[~}
[

H
o

«

i
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Boundary Conditions Locations
o =1f (x, t =0
y ( ) y
= = >
ox 0 x=0 y > L

The length 2L could be increased and this gives more accurate
results, Such increase would have little effect on the solution for points
close to the contact surface S, The little increase in accuracy would be

at the expense of computer time,

Problem 2. Penetration of a rigid plate into a horizontal surface,

bounded by a vertical surface at the edge of the plate, Fig. 3-2,

The coordinates in problem 1 are turned 90 degrees clockwise, which
means that the vertical surface in problem 1 becomes a horizontal surface in
problem 2, In the actual solution the only difference is the direction of the
body force. Fy (Eq 2-23b) in problem 1 is in the y direction, and stays as

Fy in Eq 2-23b, 1In problem 2 the body force Fy becomes Fx and stays Fx

in Eq 2-23a,

Boundary Conditions Locations
u=f£f (y, t) x=0 y. 5L
u=0andvs=20 x = 2L
u=0andv=0 y = 2L
o =f (x, t = 0
y -~ B & y
g =90 x = 0

X

Problem 3. Penetration of a rigid plate into an infinitely long verti-

cal surface, normal to the direction of loading, Displacements assumed to

vanish at finite distances from both edges of the plates, Fig, 3-3.

The boundary conditions take the form:
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Boundary Conditions Locations
u=0and v=20 y=90
u=0andv=0 x = 2L

u=0and v =0 y = 3L
u=f (y, t) and v = £ (y, t) x =0 L= ys 2L
o, = 0 x =0 L>y>2L

Problem 4. Penetration of a rigid plate into an infinitely long

horizontal surface, normal to the direction of loading, Displacements

assumed to vanish at finite distances from both edges of the plate, Fig., 3-4.

Problem 4 is the same as problem 3, except that the coordinates and

the body force are turned 90 degrees clockwise.

Boundary Conditions Locations
u=0and v=20 y =0
u=0and v=20 x = 2L

u=20and v=20 y = 3L
u=f (y, t) and v = £ (y, t) x=0 Lsys2L
o, = 0 x=0 L>y > 2L

Problem 5. Penetration of a rigid plate into a vertical surface,

bounded by a horizontal surface at a distance L’ from the edge of the plate,

Fig. 3-5.

Boundary Conditions Locations

u=f(y, t) and v = £ (y, t) x=0 L'<ysL+L’'
u=0and v =0 y=2L+1L'
u=0and v=20 x = 2L

cy=f(y,t) y=20

o =0 x=0 y <L’

o =0 x=0 y>L+ 1
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Problem 6, Penetration of a rigid plate into a horizontal surface,

bounded by a vertical surface at a distance L’ from the edge of the plate,

Fig, 3-6.

Compared to problem 5, the coordinates and the direction of body

force are turned 90 degrees clockwise,

Boundary Conditions Locations

u=f (y, t) and v = £ (y,kt) x =0 L’ < ySL+ L’
u=90and v=20 y = 2L + L’
u=0and v=20 x = 2L

Gx = 0 x=0 y < L’

o =0 x =0 y>L+L’

o = f (x, t) y =0
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CHAPTER 1V

METHOD OF SOLUTION

This chapter is concerned with the solution of problems outlined in
Chapter III. The solution uses a numerical procedure based on finite differ-
ence approximations.

Equations 2-23 are the equilibrium equations written in terms of
displacements; the horizontal displacement, u and the vertical displace-
ment v, The method involves three basic steps.

1. The region R, indicated in Figs. 3-1 through 3-6, is covered
with a mesh. Square or rectangular meshes can be used, the size of the mesh
is prescribed by a horizontal increment length HX, and a vertical increment
length HY., For square meshes HX and HY will be identical, The smaller
the increment length HX and/or HY, the more accurate is the solution, The
solution of differential equations in a finite difference form will approach
the exact solution of the original differential equations when HX and HY
approach zero.

Displacements on the boundary in contact with the penetrating object
are specified at certain infervals of time. The intervals of time are speci-
fied by HT in seconds. 1In this analysis, displacements on the boundary are
given as an increasing function of time, and at each instant of time, displace~
ments in the region R are obtained. The system can be viewed as three dimen-
signal in %, y and t coordinates where t stands for time, and the system
starts with zero time. In the numerical solution the position of a nodal
point 0 in the mesh is prescribed by the subscripts i, j and k, where
i is the column number, j is the row number and k is the time number.

Two fictitious time numbers; k =1 and 2 are used to define the inertia

29
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force at the start of deformation, therefore for k = 3, the existing state of
deformation corresponds to time HT. For k = 4 the deformation corresponds
to the time 2 HT; similarly for k = 10, the time elapsed will be 8 HT, or
in general, t = (k-2) HT. The intersection of a particular row and column
defines the material position of the nodal point 0. By material position,
it is meant the X and Y coordinates of the nodal point O. Row and column

numbers start with 1 and therefore for a nodal point O,

P
N

(i-1) HX (4-1)

<
L]

(j-1) HY (4-2)

The analysis can be used to study influence of a rigid inclusion in
the region R, 1In this case, a specified number of adjacent nodal points
should be prevented from moving. Such nodal points can be specified anywhere
in the region R.

2. Equations 2-23a and b are written in a finite difference analogue.
These equationglare nonlinear difference equations. Figure 4-1 shows a
typical nodal point together with the adjacent nodal points. If the material
position of point 0 is i, j and the time position is k, then the posi-~
tion of the neighboring points are as. shown in Fig, 4-1. Considering the
convention as given in Fig. 4-1, the elements of Equations 2-23 can be written

in finite difference form, as:

i-f, -0,k i j-l,k ielj-1,k
i-1,j,k 0 fij,k i+, k
i-1,j¢l,k ivl,)elk
i,j*lk
FIG, 4-1

FINITE DIFFERENCE CONVENTION
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A== Gy e 25,0t Y1, g, 1 EE
B = u = (ui+1,j,k - ui-l,j,k) / 2 HX,

C=ve= Oint 5k Vie1, 5K / 2 HX

D= v ™ Uit g ekt Vi, 500 (B
F=ve = O sk Viyge10 /2

L=ue ™ Wiy s,k "%-1, 741,00 F %ol 51,k
- Uy ) /4 BEEY

M= g = Gy e T gt ) (B

N=voo = O T 25t Ve, 0 Y

PH=u = (ui’j’k._2 - 2ui’j’k_1 + ui,j’k) / HT®

PS = v = (vi,j,k-Z - zvi,j,k-l + Vi,j,k) / HT?

Q= Ve = iy g1,k 7 Vie1, 0k T Vie, 501,k
- Vi, 10 /4 EKEY

R=u = (4 g Y510 /20

= 0 if the contact surface is vertical

=Yg = unit weight (1b/cu., in.) if the contact surface is

horizontal,

=Yg = unit weight (1b/cu. in.) if the contact surface is

vertical
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0 if the contact surface is horizontal

=
it

mass density (1b sec®/in*

o
1

PH and PS multiplied by p gives the inertia forces. PH and PS
are written in backward difference form since the values of displacements at
k+l are not known.

The finite difference versions shown above are used throughout the
region except where abrupt changes in displacement are anticipated or where
there is no nodal point adjacent to the point considered. In such cases,
simple differences are written in terms of points which are only one material
increment length apart. Taking for example problem 1 in Chapter III, for all
nodal points which are located at one vertical increment length below the
line Sl’ as shown on Fig,3-1, a forward difference form is used, then R,

L and M take. the forms

R=(uy s k™ %50 /WY

M= (U T 2 gt Y50 (B

L= (i, 01,0 7 %L, 340,k T -1, 5,k
(gi+1,j,k) / 2HX HY

For nodal points on Sl’ a backward difference is used, then R, L

‘and M take the form

R= (o 567 %501, /Y

= (u, |, - 2u, , +u, , HY®
M52, 7 2%, 51,6 T %, 5000 7

= g5k 7 Yo,k T %1, 5o,k T Yo, g0 (2 EEEY

i

/
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For the six problems considered in Figs, 3-1 through 3-6, nodal
points with an open circle are those where backward differences is used, those
with a dark circle are those where forward difference is used. Such modifica-
tions are only for R, L and M. For all other points central differences
are used.
Having written the elements of Eqs 2-23 in finite difference form,

then Eqs 2-23 can be written in the form:
j [
(A+26) (A} (1-B)~-CD | + (A+ G) L Q (1 - F)
R [ )
-RL +6G | M(1-B)-NC ;- PH (p)

+ F_ = REX, (4-1a)

(N+%)\N(1—F)-RM}+(X+G)(L(l-B)-CQ)

+G{D(l-F)-RA } - BS (p) + F, = REY (4-1b)

’j,k

REY, ., = REX, . =0 if equilibrium is satisfied
1!J’k l)J’k

|REX, . ,| >0 if equilibrium is not satisfied
i3,k

]REY. . ] >0 if equilibrium is not satisfied.
i,j.k

The nonlinear Eqs 4-la and b have to be satisfied at each node. The
deformation parameters are functions of the state of deformation aﬁd written in
terms of the deformation modulus E'; and lateral strain ratio v'.

3. Equations 4-la and b have to be solved numerically. The point relax-
ation technique together with the two-variable technique are used in this study.
Such techniques have been described by Allen (1), and applied to the solution

of systems resulting in simultaneous linear equations. The mesh which covers
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the region R 1is a relaxation net. At each node two variables have to be
found, u and wv; therefore two residuals are defined at each node; REX and
REY, The object is to reduce these residuals. Two basic operations are per-
formed at each node which involve the addition, separately, of unit increments.
Each operation gives a relaxation pattern., One pattern shows the changes made
to the residual REX and the other shows the changes which affect the value of
REY. The relaxation patterns can be deduced from Eqs 4-1, At a typical node
0 we apply a unit increment, Au = 1, to u. The same increment is applied
to the neighboring nodes, and in the meantime it is assumed that no changes are
affecting v. For the typical node 0, Fig, 4-1, a unit increment of Au =1

at the i,j,k, will produce a change in REXi equal to:

3,k

4

AREX, ik (M + 26) Q-ﬁ%z (L -0) -0 ] + (A+ G) (0)

il

-2 (1-0 7 _ _p
+ G ( HY J

HT®

_ { A+ 26, G _p -
=-2\m@ ‘tme ) we (4-2)

The change in REX at i,j,k due to increment Au =1 at i,j-1,k is

equal to
(A+26) () + (L +6) (5= (0 ,+G 352 (L - 0) )

- &, (4-3)

The change in REXi caused by unit increment at i, j+i, k is

>3,k

equal to

N

(A+20) (O + A+ Q) (G O j+6 30, =% )
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The change in REXi i,k due to AMu =1 at i+l,j,k is equal to
"1 1 5
M +260) \ gzz (- 255 )
+ (A+ G) (0) + G (0)
1 1
= (A +20) \ 5% " T ) (4-5)

The change in residual produced at 1i,j,k due to Au =1 at

i-1,j,k is equal to

O+ 20) (5o + e (4-6)
denoting
A+ 2G as VDR
A+ G as VSR
G as SHM
P as RHO

then Eqs 4-2 through 4-6 give the relaxation pattern shown in Fig. 4-2.
Equations 4-2 through 4-6 are deduced from Eq &4-1la.
For the REY residuals another relaxation pattern is deduced from

Eq 4-1b and shown in Fig. 4-3,
The aim 6f this relaxation procedure is to reduce the values of all

- residuals to zero, increments Au and Av are applied at each node in order

to liquidate the corresponding residuals at i,j,k. The technique used in this

study involves an iteration process which involves the following:
1. Choose initial values of u and v at each node in the relaxation

net, Zero values are initiated in this analysis.

2. Compute the residuals REX and REY according to Eq 4-la and b.
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3. Begin to liquidate the REX residuals. Using the relaxation
pattern shown in Fig. 4-2, this is done by the application of increments Au.

At a particular node, Au will be equal to - REX / [ -2 ( VD& * ;gg gﬁo ]

Complete liquidation is not necessary at this point. A reduction down to 10
percent of the original values is sufficient., No residuals are carried to
the boundary nodes,

4. Calculate the residuals REX and REY again, using the new values
of u at the end of Stage 3.

5, Liquidate the residuals REY partially, using the relaxation

pattern shown in Fig. 4-3. At a particular node, Av will be equal to

VDR RHO
'REY/[.'Z(H?'J’HX'd ~ HT®

6. Recalculate the residuals REX and REY wusing the values of v
at the end of Stage 5, which incorporates all the changes made,

7. Continue liquidation of REX residuals as described in Stage 3.

8. Recalculate the REY residuals and REX residuals.

9. Continue liquidation of REY residuals as described in Stage 5.

Stages 6 to 9 are repeated until all residuals are reduced to a certain
specified tolerance. Hence, the smaller the tolerance the larger is the time
required to obtain a solution,

It is important that the relaxation patterns be used with consistency.
That is, the same relaxation pattern should be used at each node. "In Appen-
dix B, the procedure is shown to be convergent.

Equation 4-1 is valid at each node inside the region R. For nodes
which are located at one increment length from those boundaries where stresses

are specified, Eq 4-1 is modified. The terms O and o© in Eq 2-23
XX, X v,y

3 3
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are written in different form to include the state of stress at the boundary;

this is done as follows:

GX - GX
= i)jsk i-leak
XX, X HX

[}

%i [ (A + 2G) ( B - 1/2 (B + C?) ) + A ( F - 1/2

(F® + R® } - o ]
i-1,j5,k

o at the boundary for all problems is zero and therefore:

1 - 2 2 (oL 2 2y 4
HX[VDR (B -1/2 B +¢*) + 1A F-1/2 (F +R8) ) .

o
XX, X

and similarly;

l_ / 2 2y ) - 2 a0 &
cyy’y HY[VDR\F-l/Z (F° + R®) )+K\B-l/2 (B +C))

A
- O .
yisj‘lgk ”

Therefore the equations of equilibrium at the nodal points at one incre-
ment length from the surfaces where stress is specified are:

a, For nodes adjacent to where 0y is specified:
()\+2G)§\A(l—B)—CD)+()\+G) :;Q(l-F)
-RL/+G5\M(1-B)-NC/

- PH (p) + F_ = REX, . (4-7a)

»Js
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(1/uY r (M+26) (F - 1/2 (FF +R®) + A (B - 1/2

@B +c®)-o0 }+G{L(1-B)
Vi,15k ‘
"
- AR+ D (I-F) - QC - p (PS) + F = REY, .o (4-7b)

b. For nodes adjacent to where o, is specified as zero,

(1/HX) r (AN+26) (B-1/2 (B2 +¢C% )+ A (F - 1/2

[ 59

(F2+R2)-|+G£M(1-B)-LG+Q(1-F)

-
l

- NC I p (PH) + FX = REXi,j,k (4-8a)-
r - - -
(A + 2G) LN (L-F)-RM :+ (A + Q) i L(L-B)-CQ :
+e! D@ -F) -RA |- PS5 (p) +F = REY (4-8b)
L 4 y i,j.k

In the previous discussion, Eq 2-19 was employed as relating stress
and strain at a point inside the media. The relations expressed in Eq 2-19
were assumed to be valid at any level of strain. This, however, is not strictly
true unless the material is below yielding (the so-called plastic case). For
the analysis of the stress strain relations after yield, and for a proposed

elasto-plastic analysis, the reader is referred to Appendix C.



CHAPTER .V

RESULTS AND DISCUSSION

Geometry of the Problem

The geometry of the problem which has been selected for detailed
studies is similar to that of Problem 1, Chapter II1. It is the problem of
a rigid plate penetrating a vertical surface bounded by a horizontal surface
which is free of stresses. Figure 5-1 shows the relaxation net considered

with the following

Z
J— / 54" —~—
! 2
s
w | /
I8 L/
% ‘ 3"
) 1 L/
q 4 172 ,
A
/
i
| L/
%
len /
L
L/
L/
1
VAR A4 / 7 J 7 /7 7/ /S /S 7S /S s S L sS S S Va4
FI1G, 5-1
Y
Y PENETRATION OF RIGID PLATE INTO VERTICAL SURFACE

BOUNDED BY A HORIZONTAL SURFACE AT THE EDGE OF PLAIE
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Boundary Conditions Location

u= £ (y, t) x=0 y.S 18"
v=20 x =0 y S 18"
u=0andv =20 x = 54"

u=0and v=20 y = 36"
o= 0 x=0 y > 18"
cy =0 y=20

Width of plate = 12"

The function £ (y, t) is defined by the rate of loading. The .
movement of the plate is a rigid movement, that is, all nodes which lie on
the boundary x = 0, y = 18" move the same amount at a particular instant
of time, For this particular problem, the function £ (y, t) is actually a

function of time only or £ (t) and

u = RT (5-1)

where
u is the movement of the plate
R 1is the rate of loading
T time elapsed since the start of penetration at T = 0,

Equation 5-1 shows that the movement of the plate varies linearly
with time, and the velocity is equal to rate of loading. For a particular
raté of loading the purpose was to determine the distribution of displacements
and étresses throughout the medium included within the relaxation net, at
specified time and displacement stations., Two methods can be used; either to
fix the time stations and accordingly vary the value of displacement for

different rates of loading or to fix the displacement stations and vary the
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value of the time interval for different rates of loading. Figure 5-2 shows
the time displacement curves, for two rates of loading, 53.2 in./sec and

106.4 in. /sec.

106.4 IN/SEC
Z 53.2 IN/SEC
~” 665
=4
X 532
-
L 399
W 3
w
g 2.66
-
»
= .33

L N | i 1Y

25 5 75 10

TIME X 107 (SEC)

FIG. 5-2

EXAMPLES OF DISPLACEMENT-TIME CURVES AT THE BOUNDARY

The curves shown in Fig. 5-2 do not have to be linear. Any type of
loading could be used as long as the displacement at each time station is
known,

In solving for the two rates of loading the solution is carried out
for the displacements of 0.0133, 0.260, and 0.0399 in., etc. The time

interval between two consecutive displacements is 1.25 x 10 % sec for a rate
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of loading of 106.4 in./sec, and 2.5 x 107* for the rate of loading of 53.2
in./sec, That is, for higher rates of loading, it takes less time to obtain

a particular displacement.

Soil Properties

Soil properties were described in Ref, (3). The soil was a clean,
light brown, dry sand known locally as Colorado River Sand, The sand was
found to be subangular in shape and having a rather tough texture. Sand
grains were mainly quartz, with some fragments of igneous, metamorphic and
sedimentary rocks. The results of mechanical analysis reported in Ref. (3)
are shown on a semi-logarithmic plot in Fig. 5-3. The sand was reported to
have a specific gravity of 2.67 and maximum density of 108.26 pcf and a mini-
mum density of 94 pcf. A curve for Ottowa Sand is shown for comparison,

The sand compacted to a density of 102 pcf which is a medium density
condition, is considered in this study. The material is considered to have

the deformation properties shown in Figs. 2-1 and 2-2,

Experimental Work

Experimental work related to this study has been reported by Horadam
(7) and Hustad (8). The geometry of the problem related to the experimental
work is different from that shown in Fig. 5-1. The 18 in. plate in the experi-
mental work was treated as a short retaining wall, and hence the region x = 0,
y > 18" is not free from stresses. In the theoretical solution, the vertical
displacements of all nodes in contact with the plate is assumed to be zero,
which is not the true situation, The program, however, could be run by assuming
that for a sufficiently fine relaxation net such displacements are fractions

of the displacement of the neighboring nodes situated at one horizontal
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increment length. Such fractions could range from 0.0 to 1.0, The value of
1.0 represents a perfectly smooth plate.

In Ref. (7) slow rates of loading ranging from 0.0067 in./sec up to
2.66 in./sec were used., Figures 5-4 through 5-9 show the experimental load-
displacement curves taken from Ref. (7) together with the theoretical curves
developed in this study. The theoretical values are higher and the difference
between theoretical and experimental increases with an increase in displace-
ments. The values reported in the experimental curves are average values of
several tests. In Ref, (7) maximum values of 1938 1lbs were reported as well
as values down to 1342 for the same rate of loading. This is due to the
difficulty in repeating the same soil properties each time the test is run.

In Ref. (8) it was reported that "the wooden vertical restraint that
was used to constrain the loading apparatus from moving in a vertical direc-
tion did not function properly", and hence the loading in the experimental
work was not strictly horizontal., Some difficulties were encountered in
trying to obtain a plane strain case in the experimental setup. A thorough
discussion on such difficulties is treated in Ref. (8).

All the above mentioned factors, assumptions made in theoretical
solutions, and the difference in the geometry would definitely contribute to
difference between the theoretical and experimental values. Figure 5-10
shows the theoretical curves for six rates of loading up to 2.66 in./sec.
Figure 5-10 illustrates that for slow rates of loading, the rate of loading
has only a slight effect on the shape of the curves as well as on the ultimate
resistance.

It was felt that at least one theoretical solution should have a
common base with respect to the boﬁndary conditions used in the experimental

work reported in Refs. (7) and (8). For that purpose a theoretical solution
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was obtained by treating the plate as a short retaining wall. For all the
nodes on the surface x =0, y > 18" (cf. Fig. 5-1), displacements were set
to zero. The rate of loading considered was 0.532 in./sec. The load-displace-
ment curve for the above problem is shown in Fig, 5-8. From Fig., 5-8 it can
be observed that this change in the boundary condition has a small effect for
the rate of loading considered. It was not possible to take into account in
the theoretical analysis other differences related to the load application
as mentioned in Ref. (8).

In studying the effect of the rate of loading, solutions were obtained
for higher rates of loading, keeping the same displacement increment as
0.0133 in. and decreasing the time interval. Figure 5-11 shows the displace-
ment-load curves for the rates of loading of 0.0067, 0.0133, 0.0333, 0.133,
0.532, 2.66, 13.3, 26.6, and 39.9 in./sec, together with a portion of the
curves for the rates of loading equivalent to 332.5 and 53.2 in./sec. It
is apparent that there exists a difference in the resistance to movement.
between slow and high rates of loading. The difference increases with increase
in displacement, The difference can be attributed to the increasing signi-
ficance of inertia forces as rates of loading increase,

Table 5-1 shows the inertia forces at maximum load for different
rates of loading. The node in the relaxation net for which the values in
Table 5-1 were obtained has the coordinate (4.5, 9) that is 9 in. below the
free surface and 4.5 in. away from the vertical surface of the plate, The
inertia forces would be zero if displacements inside the region vary linear-
ly with time, but the soil is a nonlinear material. 1If at a particular node,
PX 1is the inerti% force in the X direction and PY is the inertia force

in the Y direction then,
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FIG, 5-11

ANALYTICAL LOAD-DISPLACEMENT CURVES
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- PP (5-3)

PX and PY wvanish if DX and DY become zero or if HT is very
‘large. The inertia force could still be slight, despite nonlinearity, if HT
is large, which is the case for the slow rates of loading., With the decrease
in HT, that is, for higher rates of loading, the terms PX and PY would
get larger, The inertia forces tend to bring the system back to its original
position and hence, the displacements inside the region would be smaller for
higher rates of loading if two rates are compared for the same boundary condi-
tions. Table 5-2 shows displacements in the X direction of nodes on a
 vertical plane 4.5 in. away from the plate, the movement of the plate is
0.133 in. Table 5-3 shows the same information when the movement of the
plate is 0,2393 in.

Figure 5-12 shows the load-displacement curves for rates of loading
higher than 2.66 in./sec. It can be observed that a big difference exists
between slow and high rates of loading, but, when high rates are compared
together, the difference again becomes negligible, The terms slow and high
as used in the text are arbitrary. For this particular problem, the follow-

ing classification is adopted.



TABLE 5-2
HORIZONTAL DISPLACEMENTS (IN,) VS. RATE OF LOADING (IN,/SEC)

OF NODES ON A VERTICAL PLANE 4.5 INCHES FROM THE PLATE

MOVEMENT OF PLATE = 0.133 IN,

58

Rate of Distance from Surface (in.)
Loading
in. /sec 3 6 9 12 15 18
2.66 0.1234 0.1233 0.1231 0.1227 0.1223 0.1218
13.3 0.1230 0.1226 0.1222 0.1216 0.1210 0.1205
53.2 0.1223 0.1219 0.1214 0.1209 0.1204 0.1197
106.4 0.1160 0.1163 0.1160 0.1149 0.1129 0,1088
TABLE 5-3
HORIZONTAL DISPLACEMENTS (IN,) VS, RATE OF LOADING (IN, /SEC)
OF NODES ON A VERTICAL PLANE 4.5 INCHES FROM THE PLATE
MOVEMENT OF PLATE = 0.2393 IN,
Rate of Distance from Surface (in.)
Loading
in. /sec 3 6 9 12 15 18
2.66 0.2265 0.2264 0.2262 0.2259 0.2257 0.2255
13.3 0.2259 0.2257 0.2254 0.2251 0.2249 0.2249
26.6 0.2240 0.2233 0.2240 0.2215 0.2207 0.2205
53.2 0.2230 0.2214 0.2203 0.2192 0.2182 0.2175
106.4 0.2115 0.2111 0.2095 0.2073 0.2040 0.1964
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Slow rates 0 - 2,60 in, /sec
Intermediate rates 2.66 - 100 in. /sec
High rates > 100 in./sec

The above classification is based on the conclusion that for rates up
to 2.66 in,/sec the difference in ultimate resistance is small and for those
greater tﬁan 100 in./sec, the difference in ultimate resistance also is
small, Table 5-4 gives total load carried by the plate vs, the movement of
the plate, for different rates of loading. The information in Table 5-4 was
used in constructing Figs. 5-11 and 5-12, Figures 5-11 and 5-12 both indicate
that for small displacements, less than 0.1 in., the load carried by the plate
differs slightly between slow, intermediate and high rates of loading.

Figure 5-13 shows the ultimate load vs. the rate of loading. The
semi~-flat part of the curves is for high rates of loading, greater than
100 in./sec. The shapé of the curve is similar to that of the so-called
error function (4) except that the initial portion does not start from zero
and the middle portion is steeper than that of the error function. In order
to obtain a mathematical model to describe the curve, the curve is redrawn
again in Fig. 5-14 with non-dimensional coordinates.

The vertical scale contains nondimensional quantities which were ob-
tained by dividing the ultimate load by the maximum ultimate load. The maxi-
mum ultimate load is considered that which corresponds to a rate of loading
of 200 in./sec, for which the ultimate load is 35,800 1lbs,

Values on the. horizontal scale are divided by 200:and multiplied by

. P
3 so that the relation would be ult vs Z where Z 1is equal to QE;:
Piie 200
max

The error function of 3 is very closé to one which is the maximum value on

the vertical scale. Based on Fig. 5-14 the general relation will be:
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Pule _ 2 ;“Za
Pult /T

max

in which Z 1is greater than C.
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(5-4)

The value of C 1is found by trial and error to be 0.6 for Z > 0.6

and to be equal to 0.92 Z for 0 < Z = 0.6, Another constant should be added

since the curve does not start from zero values,

the form:

for 0 =2 =s0.6

0.082

-o?

ule ;5 e da + 0.056

ult
max

and for 0-6 < Z < 3,0

Z - 0.6
Pult 2 -
= e do
Pu1t 7ﬁ
max
0
where
3R
Z = 200
R = rate of loading in,/sec,

So that the relations take

(5-5)

(5-6)
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The integrals in Egs. 5-5 and 5-6 could be evaluated numerically or
obtained from mathematical tables (11). The program listed in Appendix D

evaluates the integral,

Average Earth Pressure Modulus
The average earth pressure modulus as used in this text is defined as:

£

K=7%3

P total resistance to plate movement

K is the average earth pressure modulus in 1b/in.?/in.

A the area of the plate (216 in.?)

d movement of the plate (in.)

Figure 5-15 shows the variation of K with movement of the plate,

For low movement, less than 0.05 in., the behavior for all the rates is the
same. That is, there is a decrease in K with an inecrease in d, For
larger movement of the plate, the curve for the rate of 2.66 in./sec continues
to show the decrease in K for an increase in d. For the rate of loading
of 2.66 in,/sec the inertia force is negligible and behavior corresponds to
that of the so-called static case, For intermediate, 53.2 in./sec, and high,
332.5 in,/sec, rates, the curve shows an increase of K with increased d

for movements greater than 0.05 in.

-Effects of Rate of Loading on Distribution of Horizontal Stress

The plane chosen for discussion here is 18 in. below the surface.
The distribution of horizontal stress on nodes along this horizontal plane

will be considered.
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In Tables 5-5, 5-6, and 5«7 the horizontal stresses are listed at
equally spaced nodes on a plane 18 in, below the soil surface, The distance
of horizontal movements for the plates in Tables 5-5, 5-6, and 5-7 are
0.0665, 0.133, and 0.2128 in., respectively. Data from the three Tables are
plotted in Figs. 5-16, 5-17, and 5-18. 1t can be seen in these figures that
the rate of loading has a marked effect on the distribution of stresses for
nodes close to the plate, This effect decreases with an‘increase in distance
from the plate,

The three Figures, 5-16, 5-17, and 5-18, show that the rate of
loading has a marked effect on the distribution of stress as well as on the
values of stresses for nodes situated within a distance equal to approxi-
mately the depth of the plate (18 in.) which is the bearing surface.

Stresses increase with an increase in the rate of loading when slow rates are
compared with intermediate and high rates or when intermediate rates are com-
pared with high rates. The other observation is that when slow rates are
compared together the distribution is practically the same, The same obser-

vation applies also when high rates are compared together,

Distribution of Stresses on the Plate

Figures 5-19, 5-20, and 5-21 show the distribution of stresses on
the plate for different rates of loading for three values of plate movements.
Nonlinearity of the curves increase with increased rate of loading. For the
rate of loading of 2.66 in,/sec, the movement of the plate of 0.2128 is close
to that which corresponds to maximum load and the distribution is rather
uniform and the nodes along the plate cannot sustain more stresses even though
the displacements increase with time. The resistance of the neighboring nodes

is greater., This is shown in Fig, 5~19 by observing the stress distribution
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curve for the rate of loading of 2.66. For higher rates of loading the same
situation will develop when the movement of the plate is higher than 0,2128
in, The latter observation can be seen by examining the complete results

from output of different rates of loading.

‘Distributions of Stresses and Displacements in the Soil Mass

Figures 5-22 through 5-27 show the contour lines for horizontal
stresses and horizontal displacements for the region bounded by the plate.
Three rates of loading corresponding to 2.66, 106.4 and 266 in,/sec were
considered, ©No general conclusion could be drawn from the contours shown
since such contours depend on the rate of loading and the displacement of
the plate., An argﬁment related to these contours should be built on large
numbers of such contours. The shape of such contours, however, shows that
the distribution of stresses and displacements is compatible with the boun-

dary conditions.

Conclusions

The two quantities E’ and V', which are analogous to the modulus
of elasticity E and Poisson's ratio Vv, have been found to represent the
soil properties provided that such quantities be allowed to vary with strain
level, The resistance of a 102 pcf density sand to penetration of an 18 x
12-in. plate at constant velocity has been investigated for different rates
of loading. From the force displacement histories several conclusions have
been drawn:

1. For rates of loading up to 2.66 in./sec, no significant change
occurs in the resistance and in the state of stress and deformation in the

medium,
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2. For rates of loadings from 2.66 up to 106.4 in./sec, there is a
marked effect on the state of stress and deformation in a region within a
distance approximately equal to the length of the bearing surface. Higher
rates are associated with higher stresses.

) 3. With increased velocity beyond 106.4 in./sec, Conclusion 1l is
drawn again. Also, a plateau of force level develops with increasing
velocity.

Restating Conclusions 1, 2 and 3 it can be said that no significant
change is observed if slow rates (= 2,66 in./sec) alone are compared. Sig-
nificant effect is observed if slow rates are compared with intermediate
(> 2.66 and = 106.4 in./sec) rates, and with high (> 106.4 in./sec) rates.
The significant effect is observed when intermediate rates are compared alone
or with the high rates, ©No significant effect is observed if high rates are
compared alone,

4, The distribution of stresses on the plate increasingly deviates
from lineafity with increased rates, if slow, intermediate and high rates are
compared, For all rates of loading the highest stresses develop at the lower
boundary of the plate,

5. In the region outside that bounded by a distance equal to approxi-
mately the length of the bearing surface, the state of stress and deformation
changes slightly with the rate of loading.

6. The significant effect of the rate of loading on the force dis-
placement history described in Conclusions 1, 2 and 3, increases with increase
in deformation,.

7. For slow rates, the earth pressure modulus decreases with in-
creased displacements of the plate, For intermediate and high rates there is

some displacement at which the modulus starts to increase until it starts to
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decrease again at a higher displacement; both values of displacements are
different for intermediate and high rates.

8. If slow, intermediate and high rates of loading are compared,
there is an increase in the value of displacement at which the resistance
starts to decrease with increased rates of loading.

The above conclusions were drawn from the numerical experiments., It
should be emphasized that all numerical values obtained depend on the E’
and v’ relation with respect to the axial strain €. which was obtained
from two experimental curves. Therefore all quantjitative information regard-
ing the above conclusions depend on the E'’ and v’ relation with axial
strains.

Experimental research has been done to obtain E' vs €, curves
but little has been done to investigate the v vs e, relations for
different soils. All this leads to the important conclusion that

9, Extensive research is needed to investigate the variation of v’
and E’ with the strain level., Such information is of high importance in
any theoretical solution,

Based on the above conclusions, the following recommendations are
proposed:

1, Numerical experiments using the computer program should be done
on different sizes of contact surfaces and different soil types in order that
more general conclusions can be drawn regarding soil response to dynamic
loading.

2. An extension to the program is recommended to solve for inclined
dynamic loading; such extension would involve the resolution of body force

into directions parallel and normal to the direction of impact. The coordi-

nate axis would be rotated so as to coincide with the above directions.
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3. An extension of the program is recommended to vary the deforma-
tion properties inside the relaxation net.

4, An extension of the program is needed to solve for sloping or
irregular boundaries using numerical techniques.

5. Further studies are recommended to force agreement between analy-
tical and experimental results by varying arbitrarily the lateral strain
ratio curve.

6. A rotationally symmetric solution is recommended for further
studies,

7. Further study is recommended to determine the influence of rigid
inclusions inside the relaxation net.

8. A subroutine should be added to the computer program for the
purpose of plotting contour lines of stress and displacement in the soil

mass.



APPENDIX A

DERIVATION OF STRAIN COMPONENTS

Two modes can be employed to describe the deformation in a continuous
medium: the Lagrangian and the Eulerian modes., 1In the Lagrangian description,
the coordinates a; of a typical particle in the initial state are treated
as independent variables, while in the Eulerian description, the coordinates
X, of the particle in the deformed state are treated as the independent
variables. Hence, if the Lagrangian mode is used, the cqordinates in the

deformed states are written in terms of those of the initial state as

Xi = Xi (al, dg aa). (A-l)

On the other hand, if the Eulerian mode is used, deformations are

described by

a, =a (x, %, % (A-2)

In any problem, stresses acting through the medium must satisfy
equilibrium conditions in the deformed state, 1In this study Eulerian coordi-
nates have been used to describe the strain components, For infinitesimal
deformations. (when products of derivatives can be neglected), the two modes
‘are identical.

Consider a group of particles on some Curve C, before deformation,

(cf. Fig. A-1).

88
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o U, —»

.- x, —————]

FIG. A-1
DEFORMATION OF AN ARBITRARY

LINE ELEMENT M N.

Let the coordinate of some particle M on C, be denoted by
(ay, ag), and the coordinate of another particle N, at a distance ds, from
point M be (a; + da;, ap + day). After deformation point M and N will
be on another curve, say C,. The new coordinates of point M which is now M’
on C, are (x;, X;) and the coordinates of N which is now N’ on C, are
(% + dxy, x, + dx,).

The elements dsy and ds on Cp and C; can be described as

follows:
dsy® = da,® + day® = da, da;, i=1, 2 (A-3)

dsg = dx12 + dXQz = dxi dxi i= 1, 2 (A-Z{.)
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Considering the Eulerian description of deformation, then from Eq A -2

da da
= Sa Say -
da, 3%, dx, + e dxp (A-5)
da Qda
dag ='§;? dx, +'S;: dxp (A-6)

Or in a tensor notation
dai = aik dxk (A-7)

where
Bai
&k = 3% denote the differentiation with respect to the kth

independent variable,

Substituting Eq A-7 in A-3 yields

2

dSo dale + d322

‘D -] d R
(o ) a7 H 5y ) @e)f

da, Oa
—l =1
+ 2 3%, Oxp dx, dxg

+(Ea)2(d 12 + (22 Y (4)2 A
\ 3x, 2 \ dx, / *1 (2-8)
da, %a
Lag Cap
Or in tensor notation
2 _
dsy” = aij aik dxj dxk (A-9)

i=1, 2 j=1, 2 k=1, 2
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It is obvious the equality of dsg® and ds® implies that the trans-
formation a, = a, (xy, X3) 1is one of a rigid body motion; hence it is logi-~

cal to take the quantity ds® - dsoz as a measure of strain, and therefore it

can be written that

e / N2
2 _ 2 _ 2 2 _ ( %ay 2 _ { Q8 2
ds dso dx,° + dxp ( 3%, ) dx; \ % ) dx,
{ da ( da
- ——l _~2
{32 ) (axa)? JICS
da, 0O
- =21 =3
%, @ dx; dxp
(A-10)
da, da
- =<2 =2
2 Bxg a X dxl dX,z
or in a tensor notation,
ds® - dsg® = dx, dx, - a dx, dxk
= (6jk - aij aik) (dxj dxk)
i=1, 2, j=1, 2, k=1, 2
S = L> =1
6Jk = 0, i + i
= 2 wjk dxj dxk (A-11)
where wjk is the strain function and
2 wjk = ij - aij a5 (A-12)

The strains wjk can be written in terms of displacements since
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U, =x, - ai and therefore

a, = x, - U, i=1, 2 (A-13)

where Ui stands for displacements,.

Substituting Eq A-13 in Eq A-12, it can be written that

2 wjk = Ujk + Ukj - Uij Uik
or
an BUk an BUi
2w, = + - (A~14)
jk Bxk ij axj Bxk
Now the expressions for strain in unabridged notations can be written
as

_a—V- @z\z /‘au\a—!
ey T dy 1/2 L \ dy + k dy ) J
W (mdu, W

2 Yxy T 3y * ( d3x dy *x dy / exy

If, on the other hand, the Lagrangian coordinates were used, so that
a; are treated as independent variables, then following the same steps it is

easy to establish the following relations.

dx, = x%,, da, 1i=1, 2 j=1,2 (A-15)

where xij is the derivative of X, with respect to the jth independent

variable, which is aj in Eq A-15,



ds® = dx dxi = le xik da, dak
dsey® = daj da, = 6, daj da,
i=1, 2 j=1, 2 k=1, 2
S =0 itk
ajk = 1 j=k
ds® - dsg? = 2 nij da, da
where
2 nij = (xij Ko ~ 5jk) daj dak
Since
X, = ai + U1
then
B Xax T Bgq T U ) By 0500

2 2 _
ds ds, (U, + U 3 + Ui' Uik) daj dak

and therefore
2 T]jk = (Ujk U U U.)

hence in unabridged form

93

(A-16)

(A-17)

(A-18)
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u 2 ¥, (2 V)
x aa1+1/2[(3a1) + da;

(=S [(5 )+ (3]

9 =§2+_31)__5_13@+93_31)
Yxy da, © oa, da, dap = da, dap

Physical Meaning of Strain Components

Consider a line element with dsy = da,, dag; = 0 (that is, the line

element is parallel to the x axis before deformation) and define the rela-

ds - ds
. . a
tive deformation ¢, as then

dsgp
ds = (1 + ¢;) dsg
From Eq A-16,
ik daj da, = 2 Thy da,® (A-19)
then
(L+ ) =1+2T,

er = f1T+2 M, -1 (A-20)

By the same reasoning, if the line element was parallel to the y axis

before deformation it can be shown that

o JTTZ s - 1

The quantities €, and €, are the relative deformations of the ele-

ments M-N and M-L (Fig. A-2) which in the deformed state are M’ - N’ and
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FI1G., A-2

PHYSICAL MEANING OF STRAIN COMPONENTS

Prior to deformation the angle between M - N and M - L is a right
angle, after deformation M’ - N’ is an element of an arc as well as M’ - L',
The angle between the new elements is no longer a right angle unless the motion
is that of a rigid body motion. The strain components T,; and Tpy indicate
the relative deformation of these elements which were initially parallel to
the coordinate axis,

The projection on the x and y axis of the element M' - N’ can be

obtained as follows:

Ox
dxq ='S;i da, = dx (a)
(A-21)
Ox.
= =2 =
dx, 3a, da; = dy (b)
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Equation A-21 can be written in terms of displacements since

x. = a, + U, then
i i i

dx, = ( 1 +-§gl ) da, = dx (a)

’ da,
_ SUp -
dx, = 1+ 3 da, = dy (b)
aq
o m ! = 2 2 2 g 2
ds" = M' N ,del + dx, f(1+exx) + exy) da,
=(l+€1)dal

where

§.‘h=€ S _ 1,

da, xx’ da; 2 xy

e LM N - | M|

L | M|
The direction cosines for M’ N’ and M’ L’ (cf. Fig. A-2), can
therefore be computed as:
1+ e , % €.
/ s
cos (M" N, x) = T+ e, ° cos (M N, y) = i—:f%;
(A-22)
L, 3 e ., 1+ ¢
cos M L, x) = if:;%; cos (M L, y) = T+ e,

Equation A-22 gives the direction cosines of the tangent to the arc at

point M.

The cosine of the angle between the two tangents can be obtained from

analytic geometry as:
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cos (Sy, Sz) = cos (Sy, x) cos (S, Xx)
+ cos (Sy, y) cos (Sz, ¥y)

when S and S are the tangents to the point M’ along M’ N and M’ L',
1 2 p

or

€
XV

(1 + €)(1 + &)

cos O =

Prior to deformation, the angle © was a right angle, denoting AOxy as

the change due to deformation, then,

€

cos (TM/2 - AB) = Sin Afxy = I+ €1§{1 ¥ &) (A-23)

It is obvious from Eq A-23 that the strain component exy indicates
the shear, and if such strain component vanish; the angle between the two

elements would remain a right angle,.



APPENDIX B

EQUILIBRIUM CONDITIONS IN THE LINEAR CASE

For elastically linear material, the definitions of strains and

stresses are:

€ = u

X X

€E = v

y y

€ =u +v
Xy

6 = A(e +€)+ 2G €
p:4 y b4
(B-1)

o = A(e +e) + 2G ¢
X y y

o= A (ex + ey)

€
Xy Xy

o]
[
[}

|

(A+ 2G) u._ + A v
XX Xy

:

A+ 26) v + Au
oy ( ) vy Xy

;

G (u +v_ )
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Therefore the equilibrium equations for a linear case in terms of dis-

placement can be written as:

(A+26) u_ + (A+0) Vg O U FF - op i = REX

. . B~2a
vy x 1,J,k( )

A+260) v +(A+260)u +Gv +F - pv = REY, B-2b
( ) 7y ( ) xy p i ( )

XXy >,k

or in finite difference form,

(A+ 26G) (A) + (A+G) (E) + (G) (M) + FX - p (PH) = REX:.L ik (B-3a)

(A +26) () + (AM+6) (LY +G6 (D) + Fy - p (PS) = REYi (B-3b)

i,k

Equation B-3 can be obtajned directly from Eq 4~1 if the products of

strains are set to zero. When such products are set to zero then;

(B-4)

If all the above terms are set to zero, then Eq B-3 will be identical

to Eq 4-1,
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Convergence

nNy
n

FIG, B-1

NODAL POINTS IN RESIDUAL DISTRIBUTION

Considering an arbitrary node 0, together with the adjacent nodes 1, 2, 3
and 4, (cf. Fig. B-1) the initial X residuals (REX) and Y residuals

(REY) are assumed to be the same for all nodes.

Starting with point 0, an increment Au is applied

Da = REX, / W,

where
Wy = -2 (VDR/HX® + SHM/HY®) - %%2
AREX, = "Sifo y, = - REX,

Wo
Then the new residual at node 0 will be
REX, = REX, - REXy = 0

The incremental deformations applied at node 0 is 1%§§ﬁ
0

change the residual at other adjacent nodes, then the new residual at node 1

and this will



will be REX; = REX,

W, = VDR (1/HX® - 1/2 HX)
and the new residual at node
REX; = REX, kl-%)
0
where

and similarly

3 will be
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REX; = REX, \1-%/
REX, = REX, tkl-%i-)
where
Ws = SHM/HY®
At this stage the largest residual will be at nmode 3, since Wp>Ws
and W, 1is negative.

Liquidating the residual REX;,
o+-R-'.E.&W1
Wy

) ‘
re_ R TR - Y
REX; = REXp 4 1 - 32 )&

Since Wé<|Wb] then;

the new residual at node 0 will be



Since VDR and SHM and RHO

| (1

LY

l Wy

w
- / ] < 2
_ VDor VDR
X ~ 26X
/{ VDR , SHM \ , RHO
2\ i T /T EP

and hence it follows that,

and hence

since

then

or

where

and therefore

( VDR VDR ) _ VDR
HX® ~ 2HX® HX®
{ VDR _ VDR )
\ i ~ 2mx®
<1
VDR , SHM ° RHO
e e ) tar
W 1
| ﬁi | <32
W.
—_—
l l- Wo l <2
l LN

are positive numbers,

then
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| rExg” | < REX,

After n iterations;
n
REX, = REX; S
Since S is less than 1, then

REXoln——>,-0 as n-»

The same argument can be built for any node in the Region

Similarly, in the liquidation of the Y residuals;

Av = - REYy / W'
where
WO/ = - 2 (VDR/HY® + SHM/HX®) - 'I%%g
AREY, = - REY,
REYy = 0

The new residual REY; at Node 1 will be

’ I
REY1=REYOK1--%‘;—>

where
W, = SHM/HX®
and

REY; = REY, (1 - W, /W)
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REY, = REY, (1 - Ws '/Wo)

where
7 2 3
Wy = VDR (1/HY® + 1/2HY")
z W /\
= - ==
REY, = REY, { 1 )
where

Wy’ = VDR (L/HY® - 1/2 HY®).

Since the largest residual at this stage is at node

dating node 2 we obtain the new residual at node 0 as,

REYg' = S22 (W )
(o]

]

W')w’
M W
REYo(l v )W

It can be shown easily that;

s

1-% | <2

/

W,

L2 i

W, ~3
therefore

4 1

’ W YW o

s'= | (1-4 )@ | <1
and

77

REY, ' < REY,

2,

104

then liqui-
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After n iterations,
n
REY, = REYq (S)
and therefore

REYon--»O as n->®



APPENDIX C

A PROPOSED ELASTO-PLASTIC ANALYSIS

The purpose of this section is to develop a stress-strain relation for
soils after yield, Since, for a particular region, yielding does not occur
simultaneously, a yielding criteria should be considered. The one considered
here is the von Mises - Hencky criterion (5)* which states that yielding will

occur when the principal stresses O3, 0Op and 0z attain values such that,
3
(0y - 0)% + (03 - 01)% + (05 - 03)® = 8 K? (c-1)

where K 1is a constant for a particular material,
Evidently K depends on the confining pressure for soils and hence it
is a function of depth, For a plane strain problem O3 is not zero and hence

we assume the lateral strain ratio to be 0.5 so that,

So that Eq C-1 takes the form

16 K°
(07 - 05)% = =3

or

2 _ 16 X°

2
(cX - cy) + 4 cxy 3

Here the yield function ¢ is defined as

2
¢ = 1/4 (0, - 0)° + 0, 2 - “E o (c-2)

* In Ref. 5, Hill replaces 8 K® in Eq C-1 by 6 K=,
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The yield condition represents a surface which is the yield Locus. It
can be shown that such yield'surface is Convex (6),

Considering the increment d¢, then

_ 99 99 op -
i = 55 90, + 55 do + 53— do =0
be v Xy

the vectors %gL and dok are orthogonal,

Since there is no strain hardening; then

de do =20
X X

de do =0
y y

de do = 0
Xy Xy

And in terms of the plastic potential ¢,

- g 20
delj v 3o, .
1,3
where
¢= ¢ (ci’j)'

de, ;
The term de,, can be replaced with =——= or &, . then
ij dt 1]

o0,
1,]

Applying the above principles, the following is obtained
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éx=¢—g-g;=-}:\l;(20x-c) (a)
(¢-3)
.1
ey =% ¥ (20‘y - ox) (b)
by = ¥ (0, (©)
or
4 . .
Gx = —i‘b (2 ex - ey) (a)
o =2 (2% -t (b) (C-4)
y 3¢ y X
o =¥ (5) (c)
Xy ¥ Xy

where § is a function of the strain rate,
To find ¢, substitute the values of O 0& and cxy in terms of

strain rates in Eq C-2 and ¢ can be obtained as

1 . s N2 s N2 -]"L
= - € + € =
\ 73K L (ex y) 9/4 ( xy) 4
{ can be treated as a constant which should be computed for the
instantaneous strain rates, in the same sense that the modulus of deformation

4

E’ and lateral strain ratio v’ are computed for each particular axial strain.

Equation C-4 satisfies the condition ¢ = 0 and alsp has to satisfy
the conditions of equilibrium, The definitions for strains used in Chapter II
are for finite deformations and hence can be used for the conditions after

yield and hence the equilibrium equations in terms of displacements can be

developed as follows:



and also
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(C-5)

(C-6)

J

(C-7)

€ = u (1 - ux) - Ve Vg (a)
¢ =v (l-v)-u u b
y y ( Y) y vy (b
exy = uy (1 - ux) + v (1 - vy) - uy uo- v, vy (c)
In finite difference form Eq C-5 can be written as:
B - B
& = - i,j,k i,jik-l )_
S = (1= By 51 ( HT €i,5.k
[c - c ]—1-— (a)
i,j,k = "i,j,k-1 JHT
F - F e
| _ i,j,k i:jsk_l \" -
¢ = - F i) ( HT 7R,k
[Riajsk- - Ri)j;k'l ] (b)
HT
R - R S
p - - i,j,k‘ i,j:k"l ’ -
ey = (L7 By 51 ( HT J+ Q- F D
Cisj:k - Ci:j)k-l ) - R [:_Bisj’k - 3i)j9k"'1 -‘
HT i,3,k HT
- C [Fi3jsk " Fi:j’k-l -x (C)
i’j’k H.T J
o -4 (2 ¢ -e ) (a)
xx,x 3¢ ° X, X ¥,X
o =2 (& -& ) (b)
yy,y 3% Y,y X,y
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o =71y<é ) ()

Xy,X Xy, X

(c-7)

=—ql-, (5. ) (d)

¢}
XY,y XY,y

Substituting Eq C-7 in Eq C-6, the equilibriﬁm equations after yield

are obtained in terms of displacements,

% [ BB (2.7 AA + MM) - FF (0.33 EE) - BK AM - CC DN
- C, . 2.7 DD + FN) + 0.33 . FK + L, , GG
) 1’J,k ( ) (Qi:Jak 1sJ9k
+ R LL ?
i,j,k ) 3 -(PH) RHO + FX = REXi,j,k (a)

E [ FF (2.7 FN + DD) - BB (0.33 LL) - FK (DNN)

- GG (AAM) - Ri 3,k (2.7 MM + AA) + 0.33 (Li BK

2do» ’j’k'

-
Qg 00 ci’j EE - (PS) RHO + F = REY; . (b)

where
BB =1 - Bi’j’k
AA = (Ai,j’k - Ai,j,k-l) [/ HT
MM = (Mi,j,k - Mi,j’k_l)'/HT
FF =1 - Fi,j,k
BE = (Q 50 % 5,60 /BT
FN = (Ni’j’k - Ni’j’k_l) / HT
BK = (Bi’j’k - Bi,j,k_l) / HT
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CcC = (Ci’j’k - Ci,j,k-l) / HT
DD = (Di’j’k - Di,j,k—l) / HT
FK = (Fi’j’k - Fi,j,k_l) / HT
GG = (Ri’j’k - Ri,j’k_l) / HT.
LL = (Li’j,k - Li,j,k-l) / HT
AM = 2,7 Ai,j,k + Mi,j’k

DN = 2.7 Di’j’k + Ni’j’k

DNN = 2.7 Ni,j’k + Di’j’k

AMM = 2,7 M + A

i,j,k i,j.k
All the other terms have been defined in Chapter 1V,
For nodal points at one increment length from any boundary where
stresses are specified, Eq C~8 has to be modified and then it takes the form:

At those nodal points where Gy is specified;

[ ) 5 ) ]
3¢ Yi,4.k i,1.k Yi,4-1,k N

1
HY v
BB) LL - GG A, . + FF DD - .. CC - R, . AA C-9a
[ e» 1,3,k 4,5,k 1,3,k (C-92)
- - - 1 - RHO 4+ PHO = REY. .
Li g B Py g FRO7 Gy g BE ]- @ 1,1,k

The other equation which has to be satisfied is the same as C-8a.

For those nodal points close to where S, is specified as zero;
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[(4)(2¢ s )]
\ 3¢ \ X ik Jiix )

1
X 3 [ BB MM - Ny g,k ©C
+FFEE-L, ,,G-C, ,, FN-Q, ,. FK-M, ,
i,j,k i, ik Ql,J,k i,j,k
- 1L 1. PH = C-9b
BK Ri,j’k ] (PH) RHO REXi’j’k . (C-9b)

The other equation which has to be satisfied is the same as C-8b.
Following the same procedure as in the below yielding case, two resi-
dual liquidation patterns are obtained, For the liquidation of the X resi-

duals (REX), and the liquidation of the Y residuals, the patterns are shown

in Figs., C-1 and C-2,

Method of Solution

1. Compute the value of the yield function ¢(ci,j) at each nodal
point, This can be doné after selecting initial values of u and v at each
nodal point,

2, If ¢ 1is negative, that means that the material at that nodal
point has not yielded yet, and the solution goes on using the relaxation
patterns in Fig. 4-2 and Fig. 4-3 together with the Eq. 4-1,

3. If ¢ 1is zero or positive that means that the material has
yielded, the equilibrium Eq C-8 together with the relaxation pattern shown in
Figs. C~1 and C-2 has to be used.

Liquidation process follows the same steps as outlined in Chapter IV,

At each node the definitions of REX, and REYi

. together with the
i,j.k &

3,k
relaxation pattern are different depending on whether the value of ¢ is
negative or positive,

If the below yielding analysis can be called nonlinear elastic analysis,

then the above analysis is strictly nonlinear elastic-plastic analysis. A
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|
Y HTHY2

aAuUX = |

-2 8 |
W(B——HXZ + HY2)
RHo /

FI1G, C-1

LIQUIDATION OF X RESIDUALS AFTER YIELD



114

A WY=|

=20 8 .1\ |
YHTHX2 ' IJHT(SHYZ AXZ7/ YHTHX?

FIG, C-2

LIQUIDATION OF Y RESIDUALS AFTER YIELD
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plastic-elastic surface can be obtained for a plane strain problem at a
particular time station,

A computer program has been written fbr the solution of an elasto-
plastic problem. \It is essentially an extension for the first program for
the below yielding case. The storage requirement for the elasto-plastic
problem is a problem by itself. A computer with large storage capacity is
needed to solve any practical problem, Extensive experimental work is needed
to determine the value of K to be used in the yield function ¢(Gi’j).

Due to the above difficulties the writer has not been able to obtain
an elasto-plastic solution for any of the problems mentioned earlier., It is,
however, the writer's belief that a solution can be obtained if these diffi-

culties were tackled, especially if an appropriate value of K is found.



APPENDIX D

EVALUATION OF P /P VS, RATE OF LOADING
ult’ "ul tmax
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PROGRAM ERF { INPUTs OUTPUT)
7 READ 1sR s CsDs RR

O e - RR RATE OF LOADING CORRESPONDING TO MAXe LOAD
C = me= R RATE OF LOADING
Crmm - C AND D ARE LIMITS OF INTEGRATION

1 FORMAT( 3 E10.3)
IF{ R)99+99+8

8 Z = (R/RR)I*3.40
IF( Z-C) 29243
2 22= D % 7
GO TO 4
3 22 = 2 - C
4 N =0
PART = 27
SUM = 272
5 N =N +1
PART= — PART*ZZ#ZZ/N
TERM= PART/(2%N+1)
SUM = SUM + TERM
IF{ ABSF{TERM) = vUe0000001) 64545
& £E=161283792%5UM
IF( Z-C) 10+10,11
10 E = E + 0056

11 PRINT 12, Rk
12 FORMAT( 10Xs16HRATE OF LOADING = £10e3 s10X9e13HPULT/PULTMAX=E10%3)
GO T0O 7
99 CONTINUE
END



APPENDIX E
LISTING, FLOW CHART, AND INPUT GUIDE

FOR PROGRAM NASA
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NASA$145200925U000+320eCE36443750WELS
AXXUIRUN»S)
QXX (NASA)

PROGRAM NASA  ( INPUT s OQUTPUT )

REAL L

REAL M

REAL NN

DIMENSION AN1 ( 32 ) s AN2 ( 14 ) s

UX( 13913950) » WYL 1313950 ) ¢ REX(13913950)sREY(13513450)
STY( 13y 1950) s EX( 13513450 )

————————— SOLVES FOR DYNAMIC KESPONSE Iiv A PLANE STRAIN PRGBLoA
————————— - DUE TO SPECIFIED DISPLACEM NTS ON THE BOUNDARY

————————— MTEST BLANK FIELD FOR ALPHA NUMERIC ZERO
————————— ANI(N) ALPHA NUMERIC IDENTIFICATION
———————— NPROB PRUBLEM NUMBER ZERO TO EXIT

————————— ANZ(N) ALPHA NUMERIC IDENTIFICATION

————————— AP1--APT7 CUOEFFICIENTS OF THE MobLUS OF DEFORMATION V&
--------- AXIAL STRAIN POULYNOMIAL

————————— CPLl--CP5 COEFFICIENTS OF THE LATERAL STRAIN RATIU
————————— VS AXIAL STRAIN POLYNOMIAL

————————— KPO ZERO FOR NO DATA PRINTOUT



KASE

[TERATION

KOLE
KTEST
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ZERO FOR NO PRINTOUT OF RESIDUALS AFTER cACH

ZERO FUR NO PRINTOUT UF X OR.Y RESIDUALS
ZERU IF DIRECTION UF BODY FORCE 1S NOKMAL

TO BEARING SURFACE

JTEST
ITEST

NTEST

LTEST
IM

JB

CB1--2
TOL
TOoLP

v I
N

LB

MX
1y
AT
ALX
ALY
HT
RHU
PHO
RATL
WD
MY

YM1

Ux

WY
IT71--2
JTIT1--2

REX
REY

ZERO FOR NO RIGID INCLUSION

ZERO FUR PLATE PENETRATIONs OTHERWISE A
WEDGE OR CYLINDER

ZERO FOR UNIFORM DISPLACMENTS ON THE
BEARING SURFACE

ZERO FUR NO PRINTQUT OF FINAL RESIDUALS

MAXe NUMBER OF ITERATIONS FOR THE LIGWIVATION
OF X OR ¥ RESIDUALS :

= 1 FOR THE SOLUTION OF PROBLEMS 1 ANL 2
=2 FOR THE SOLUTION OF PROBLEMS 3  AND 4
=3 FOR THE SOLUTION OF PROBLEMS 5 AND 6
NON ZERO FOR SURFACE FREE OF STKESSES
SPECIFIED CONVERGENCE TOLERENCE

BELOW TOLP s ACCELERATIN IS CONCIDIRKED ZekO
=1 IF WY OF THE NOGDLES ON THE PLATE ARE A> KoAlL
=2 IF wy IS 15 PERCENT OF THE ADJACLNT WOLL
=3 IF wY IS 30 PERCENT OF THL ADJACENT NODLE
=4 1F WY IS 45 PERCENT OF THE ADLJACENT NOUE
=5 IF WY IS 60 PERCENT OF THE ADJACENT NOLE
=6 IF wy I8 75 PERCENT OF THE ADJACENT NOUE
=7 1F wY 1S 90 PERCENT OF THE ADJACENT NODE
=8 1F WYy IS EQUAL TO THAT OF Tmk ALDJACENT NOvE
NON ZERG FOR THE PROBLEM TO B3k TREATED AS
RETAINING WALL

HUMBER OF IWNCRESMENTS IN X vlReCTION

NUMBER UF INCREMENTS IN Y DIReCTION

NUMBER OF TIME INCREMENTS

DIMENSION GF THE PROBLEM IN X DIRECTION
DIMENSION OF Tiik PROGBLEM IN Y DIRECTION
MAGNITUDE OF THE TIME INCREMENT

MASS DENSITY

UNLIT WELIGHT

RATE UF LOADING

WIDTH OF BEARING SURFACE

NUMBER OF INCREMENTS TO THE BOUNDARY FROM ThE
EDGE OF ThE BEARING SURFACE » ALONG A LINE
PARALLEL TG THAT SURFACE s USED ONLY FOR NON
ZERO 1TEST IN PROBLEMS 3s495 sAND 6

SAME AS MMY FOR PROBLEMS 5 AND & FOR

ZERO ITEST

DISPLACEMENTS IN DIRECTION OF PeNETKRAT
PISPLACEMENTS NORMAL TO DIRECTION OF PENETKAT
DEFINES THE DIMENSION OF A RIGID INCLUSION

IN X DIRECTION sITT1 IS THE STARTING STATION
DEFINES THE DIMENSION OF A RIGID INCLUSION

IN Y DIRECTION sJTT1 IS THE STARTING STATION
RESIDUAL IN X UIRECTION

RESIDUAL IN Y UDIRECTLON

1 FORMATI(5X s48HPROGRAM NASAL-MASTER DLCK -1S OWELISs WR COX

10 FORMAT

(

5H

s B0Xs 1lunHl=w——= TKIM )
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12 FORMAT ( 16A5 )
240 FORMAT( 5X, 2 I5 )
153 FORMAT( 5Xs E10e3)
1277 FORMAT( 2 E1043 )
414 FORMAT ( A54 5X +14A5 )

11 FORMAT ( 5HI y 80Xs10Hl-=—~-~ TRIM )

13 FORMAT | 5X » 16A5 )

515 FORMAT (///10H PROB s /5Xs A5y 5Xs 14A5 )

20 FORMAT ( 10X » 1415 / 2 E10e3 )

21 FORMAT (//30H TABLE 1 CONTROL DATA s
1 /44H NUMBER OF 1TERATIONS FOR X OR Y CLOSURE s 15
2 /44H TOLERENCE Le s£10e3)
3 . /52H PRINT OUT OPTION FOR DATA (NO PRINT OUT IiF ZERO»
45 )

24 FORMAT(5X+315+s6E10e3 7/ 5X9E1Ce3)

25 FORMAT (//28H NUM INCREMENTS MX s 40Xs 15,
1 28H NUM INCREMENTS MY s 40Xs 5,
2 28H NUM INCREMENTS MT o 40Xs 15
3 28H INCREMENT LENGTH HX 9 40Xs E1Q0e39
4 28H INCREMENT LENGTH HY o 40Xs E10e30
5 28H INCREMENT LENGTH HT 5 40Xs E1Qe3,
6 28H MASS DENSITY s 40Xs ELlOe3,
7 28H UNIT WTe(LB/CUeINe) s 40Xs E£E1Qe3»
8 28H LOADING RATE(IN/SEC ) s 40Xs E10e3»
9 28H LOADING WIDTH (IN) s 40Xs E10e3 )

27 FORMAT( 8E1l0.3)
41 FORMAT (//7/30X922HSPECIFIED DISPLACEMENTS s
1 / 55H 1 J K X DIsp Y DISP
40 FORMAT (10XsI12920X912520X912920X9E1063920XeE10e3)
5C1 FORMAT ( 5X»s 312s & E 103 )
500 FORMAT (7//30X9+18H INITIAL RESIDUALS

1 //15X938HI1 J K REX REY )
9363 FORMAT (///30Xs18H FINAL RESIDUALS
1 / /15X 938HI1 J K REX REY )

9565 FORMATI( 5Xs 312e2XsE10e392XsE1063)
799 FORMAT(1Xs312s 3E1043)
681 FORMAT (///30Xe27HLIQUIDATION OF X RESIDUALS [}
.1 40H I J K RESX )

68 FORMAT ( 1XeI12 s 15Xs 12 s 15X I2 s 15X o ElCe3 9 I2 +E10e3)
71 FORMAT (//15X+48HNO X CLOSURE WITHIN SPLCIFIED INITIAL TOLERANCE
901 FORMAT (///30Xe2THLIQUIDATION OF Y RESIDUALS 3

1 40HI J K ) RESY )
92 FORMAT{1Xsl12s15Xs12915X912915XsE10e39E10e3 )
202 FORMAT (5Xs 1I5)
108 FORMAT (//15X938HNO CLOSURE WITHIN SPECIFIEDL TOLERANCE )
207 FORMAT (//35Xs BHRESULTS ’
1 55HUX WY RESX RESY
PRINT 1012
1212 FORMAT( 1H1 )
107 FORMAT(//5X912902X31232X91295XsE100395XsE10e395X9E106395XsE10e3)
6001 FORMATU(1Xs312+4E103)
7447 FORMAT( 5Xs 415 )
MTEST = 5H
PRINT 1212 .
10060 PRINT 1vu
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8015

1010

1020

105

177
17

18

151

122

FORMAT (///42H NO CONVERGENCE WITHEN SPECIFIED TOL )
FORMAT( 10Xs7E1043 / 10X+5E1043 }.

PROGRAM AND PROBLEM 1DENTIFICATION

READ 12» (AN1(N)s N = 1y 32 )

READ 414y NPROBe (ANZ(N) o N = l1lsl4 )
SUMT = 0.0
IF({ NPROB - MTEST) 1020s 999» 1020
PRINT 11
PRINT 1

PRINT 13, { AN1{(N)s N = 1932 )

PRINT 5154NPROBs ( ANZ2(N) o N = 19 14 )

INPUT TABLE 14 CONTROL DATA

READ 8U1l5 s AP1sAP23AP343AP4sAPSsAPEsAPTsCPL1sCP2sCP39CP4sCP5
READ 20 sKPO sKASE yKOLESKTEST s JTEST o ITESTaNTESToLTEST» IMsJBCB12CBZ
1 KB s LB s TOL » TOLP '

PRINT 21, IMs TOL s PO

————— INPUT AND PRINTOUT OF CONSTANTS

READ24s MXsMYsMTy ALXsALY sHT 9RHOsPHOSRATE s WD
COMPUTATION FOR CONVENIENCE
HXx= ALX/ MX $SMXP1l = MX+1
HY= ALY/ MY
MTP3 = MT +3
PRINT 255 MXsMYsMT sHXsHY sHT sRHOsPHOSRATE WD
————— TYPE OF PROBLEM TO BE SOLVED
GO TO ( 45 55 6 )y JB
JSS =1
J5S51 = JsS + My
Js2 = JSS1 + MY
JSS2 = JSS1 + 1
JsI = Jsz2 - 1
JTT= 2
IF { CBl) 104y 105, 104
J =1
bo 17 I 1s MXP1
LO 17 K 3, MTP3
READ 1775 STY(I1sJsK)

FORMAT ( 5Xs E10Ce3)
CONTINUE
GO TO 34
J =1

DO 18 1 = 15 MXP1
DO 18 K =1 5 MTP3

STY(IsJsK) = 040
CONTINUE
GO TO 34

IF( TITEST) 151s 152, 151
READ 153 » MMY
J55= MMY+1
JSS1 = JSS+ MY

JS2 = JSS1 + MMY
J5S2 = JSS1 +1

Js4 = JSS-1
JSI = Jsz2 -1
JTT= 2

GN TO 34
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152 J5S= MY+1
JSS1 = MY + MY+ 1
Js2 = JSS1 + My
J5582 = J5S1 + 1
JSI = Js2 -2
JIT = 2
GO TO 34
6 IF  ITEST ) 6666 » 6667y 6666
6666 READ 153, MMY
JSS = MMY +1
JSS1 = JSS+ MY
J§s82 = JSS1 +1
. Js84 = JSS- 1
JS2Z2 = JsS51 + MMY
Jsl = Jsz2 - 1
JTIT = 2
GO TO 6668
6667 READ 202, YMI1
JSS = YMI +1 $ JSS1 = YML1 + MY + 1
JS2 = JS§S1 + MYy ‘
J§82 = JSS1 +1
JSl = Jsz -2
JTIT = 2
cE68 IF( CB2 ) 104s 1U5s 104
24 I =1
K= 3
IF( KPO) 5111s 5110, 5111
5111 PRINT 41
5110 IF{ NTEST) 4110Cs 4112y 4110
4112 J= JSS
JSS83 = J8S+1

READ 2790X(19J9K)9VY(19J9K)9UX(IaJ’K+1),NY(I9J9K+1)9UX(19J9K+2)9
1 AL o aK+2) sUX{IsJsK+3) oY (I 9JsK+3)

JS8S83 = JSS+1
DO 4116 J = JSS3s JSS1
UX{1sJsK)= UX(IsJ=15K)
WY {TeoJaK)= WY(1sJd=1sK)

UX(IsJeK+1) =

WY (IedsK+1)=

UX{IaJeK+2)=

WYL T sJsK+2)=

UX(1sJsK+3)=

WY (1sJsK+3)=
4116 CONTINUE

UX(lyJd=1eK+1)
WY (1yd=1eK+1)
UX{1,J-1sK+2)
WY (1legJ=1sK+2)
UX{1leJ=19K+3)
WY (led=1sK+3)

K= K+4

IF( K=MTP32 ) 4112 4112, 4111
4110 IF( 1 TEST ) 2114y 2113y 2114
2114 DO 2117 J = J8Ss JSS1

READ 1277 s UX( TeJsK) » WY( IsJsK)

2117 CONTINUE

GO TO 4119
2113 DO 3vu J = JSS ¢ JSS1

READ Z27sUX{IsJsK)awY (1adsK)sUX{TIsJsK+1)awWY(IsJdok+1)sUX{IoJsK+2) sy

1 (1aJdsK+2) sUX(LlaJaK+3) aWY (I sJsK+3)

30 CONTINUE



4111
411

4118
4119

399

8961

145

7407
7408

147

7001
7002

7508

7409
7507
81

150

= K+4 .
IF { K = MTP3 ) 4110 » 4110 » 4111
IF( KPO) 41ls 41194411

DO 4118 J = JSSy JSSI
DO 4118 K = 3 » MTP3
IN1 = -1

JN1 = J - 1

KNl = K - 2
PRINT 4UsINL1s JUN1s KN1s UX(ITsJsK)s WY(1lsJsK)
CONTINUE

DO 399 1 = 1 s MXP1
DO 399 J = 1ls JSZ
DO 399 K= 1s 2
UX(IsJsK) = 00
WY{IsJsK) = 00
CONTINUE
K = 3
DO 145 1 = 24 MXP1
DO 145 J = JSSs JS2
UX{IsJsK) = UX(1sJsK~1)

WY(IsJsKI= WY(IsdsK-1)
CONTINUE
JS2 = J&8S1 + MY
Js§s2 = Jssl + 1
IF( JTEST) 7407 7408 » 7407
READ 7447 o 1TTly ITT2s JTTle JTT2

IF( Jss- 1 ) T70uvs 700y 8
JS4 = JSS - 1
DO 147 J = 1ls JS4
DO 147 1 = 2» MXP1
UX{ TedeK) = 060
WY(IsJdsK) = D40
CONTINUE
GO TO 700
IF( KASE) 70Uls 7002 » 7001
PRINT 540
JSI = Jsz2 - 1
JS4 = Jss - 1
IF( JTEST ) 7508y 7507, 7508
DO 7406 I = ITT1,s ITT2
DO 7409 4 = JTT1l, JTT2
UX(IsJeK) = 060
WY {1sJdeK) = 060
CONTINUE
GO TO ( 81 s 9 » 81 ) s Jb
DO 149 [ = 1 » MXPI
UX{I91sK) = 240 % UX{(Ia2sK) = UX(1ls35K)
WY{ITelsK) = 260 #¥ WY(Is2sK) = WY (1s34sK)
CONTINUE
IF { Jss = 1) T 9 7T » 7307
DO 150 J = 2 » JS4
UX{1aJsK) = 20 % UX(29JsK) = UX{(30eJ9sK)
WY (laJdsK) = 20 * WY (29JsK) = wY(39eJ9K)
CONTINUE

GO TU 7

124
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9 DO 148 J= 1y JS4
UX(1sJsK) = 20 * UX(29JsK) =UX(33JsK)
WY{1sJdsK) = 20 * WY (29J9K) =WY(39J4+K)
148 CONTINUE
7 DO 1490 J = JSS2 » JSI
UX{1laJsK) = 240 % UX(29J9K) ~ UX(39JeK)
WY(1oJsK) = 240 ¥ WY(2sJsK) = WY(39.JsK)
IF( LB)Y 9944, 1490y 9944
Q%44 UX( TsJsK) = 040
WYL{IsJeK) = 00
1490 CONTINUE
Crmmrm— -  COMPUTATION OF RESIDUALS
DO 50 1 = 2 s MX
DO 50 J = JTT s JSI
IF( JTEST) 7513 » 7412 » 7513

7513 IFC 1 - ITT1 ) 7412y 7413 ¢ 7416
7413 IF( J - J771 ) 7412 s 509 7415
7415 IF( J - JTT72 ) 5Cs 509 7412
7416 IFC I = 1772 ) T413y 74132y 7412
7412 UXTE Tadel ) = = UX(Isds3 )
WY {leadel) = =Y (laede3) .
15012 A = (UX(I=19JsK) = 260 #*¥ UX(L1laJsK) +UX(L+19JeK) )/ (HXF#2e0)
IF( J = JSS1 ) 9902, 9902 » 1202
Q92 GO TO | 1202 13CZ2s 1402, 1502 16025 1702 18029 1902) sKb
1302 WY{ LleJesK) = 0e15% WY (2sJ4K)
GO TO 1202
1402 WYL 1leJeK) =0e3 % WY(2edsK)
GO TO 1282
15u2 WY ( lsJsK) =0e45 * wWY(Z2sJsK)
GO TOU 1202
1602 YY{ 1esJsK) =060 ¥ wY(Z2sJsK)
GO TO 1202
1702 WY( 1aJdeK) =0e75 * WY (29J4K)
GO TO 1202
1802 WY{ leJeK) =090 * WY {2eJsK)
. GO TO 1202
1962 WY( lsesdeK) = WY (29JeK)
1232 D = (WY(I+1eJdoK) + wY(I=1eJdsK) =260 ¥ wY(IeJeK))/(HX¥*%2)
GO TU ( 306s 3484y 307) [} Jo
37 IF¢( J= JTT ) 3071 » 3071s 3484
3071 IF( 1I-2 ) 359, 359 4 3435
3484 IF( U= Js4 ) 6344 5 2424 4 4306
6344 fIF( 1 - 2 ) 6345 o 6345 ¢ 344
4306 IF( J= JS3) 343 ¢ 343 4 348
6345 Fa{ —=WY(laJd=1oK)+tuY(IeJ+1leK) ) /(2s0%HY)

G=(=UX(ITsd—1sKI+tUX{LoJ+19K) I}/ (20¥HY})
B={ UX{(TI41sJdsK)=UX{1+JsK) )/ (HX)
C=( WY (I+1eJsK)= WY (IsJeK})/(HX)
L=(UX T4+ 9J+1sK)=UX(Tad+ 1o KI=UX (141 9d=1sK)+UX(19J=1sK) )/ (2¥HX¥*Y
E= (WY (I+1 904+ 1oK)=WY (LadtLloK)=tY (I+1admloK)+WY (1oJd=1sK}))/ (2¥HXFrY
Mz (UX({IeJ=1sK)=2eC0¥UX{IoaJdsKI+UX(TsJ+1aK) )/ (HYX*2)
NN= (WYL od=1oK)=2e0¥WY{ToJsK)+WY(LsJ+lsK) )/ (mYx%2)
GO TO 644
3424 LF(C I~ 2 ) 3425 o+ 3425 5 342
3425 F=l WY(IsJ+laK)=wY (1od=1sK})/(240%HY)
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{ UX{IsJsK} = UX(IsJ=1sK))/(HY)

{ UX(I+1loJsK)= UX(IsJsK)}/{HX)

{ WY{I+1eJsK)= WY(IsJsK))/(HX)

= (UX{I9J=29K) —2e0%UX(IsJ=19K) + UX{IsJsK))/(HY**2)
NN = (WY(IsJ=25K) ~2e0%¥WY(IsJ=1sK) + WY(I9JsK))/(HY*X%2)

E= (WY (T+1sJaK)=WY {141 aJd=1sK)=WY{1sJsKI+WY(IsJ=1sK) )/ rX¥HY)

L= (UX(T+1sJsK)=UX(I+1sJ=1aK)=UX(IsJsKI+UX(TsJ=1sK)}/( HX*HY)

GO TO 644
306 IFC J - JsSS ) 343 5 343 » 348
348 IF(JU-JSS1) 344 o 342 o 349
344 F=( WY{LsJ+1oK)=WY (I sJ=19K))/(2e0%HY)

Gz (=UX{IsJ=1sK)+ UX(Iod+1aK))I/(2e60%HY)
B(UX(I+1sJsK)= UX(I=19sJ9sK))/(2e0%HX)
C=(WY(I+1edsK)= WY(I=1sJsK))/(2e0%HX)
(UX(TI+1sJ+1sK) = UX{I=~1ed+1sK) +UX(I=1sJd=149K) =~UX(Ii+1,
~19K) Y/ {4 eO¥HX*HY)
(UX(Igd=13K) = 2e0%UX(IoJsK} + UX(IsJ+1sK) )/ (HY#%2e0)
(WY {TsJ=19K) = 20%WY(IsJsK) 4+ WY(Lled+1lsK) )/ (HY%*%240)
(WY (I+19Jd+1 oK) = WY(I~1sJ+1eK) + WY(I=1sJ=1sK) - wY{
1 I+1sJ=19K)) /7 (&eQ¥*HX®HY)
GO TO 644
342 F=( WY(TsJ+1loK)= WY(IsJ=1sK))/(2e0%HY)
G={ UX(IsJsK)= UX(IsJ=1sK}}/(HY)
B= { UX{I+19JsK) = UX(I=1sJsK})/(2e0%HX)
C= ( WY(I+19JsK) = WY(I=19JsK))/(2e0%HX)
L={UX(I+1sdsK)=UX(I=1oJsK)=UX(I+19J=1sK)I+UX(I=1sJ=1eK)} )/ (2%HX*HY)
M= (UX(TaJ=2sK)=2e0%UX{T sJ=1sKI+UX(1adsK) )/ (HY*%2)
NNZ( WYL oJ~LaK)=2e0%WY(TaJdsK)HWY (I od+1ok) )/ (HY**2)
E= (WY (I+19Jd+1 oK) =WY({I=1oJ+1eK)+WY{1=19J=1sK)~WY(I+1sJ=1sK))})/

—
oW n

1 {4 o O¥HX¥HY)
GO TO 644

349 IF {0 = JSS2 ) 1345 4 1349 46344

1349 IF ( I - 2 ) 359 o 359 » 3435

34135 F=( WY(I9J+1aK)= WY(IsJ=1sK))/(2e0%HY)
G= ( UX(Isd+1lsK)= UX(IsJsK))/(HY)
B= ( UX(I+1sdseK) = UX(I=19JsK))/(2e0%HX)
C= ( WY(I+13JsK) = WY({I=1sJsK))/(2e0¥*X)

L=tUX{I+1 9J+1 oK) =UX(1=1sJ+1 oK)=UX(I+1sJsKIH+UX(LI=19JsK) )/ (2¥HX¥*RY)
E= (WY (I+1sJ+1sK)=WY{I=1 s J+1sK)+WY(I=19sJ=1sK}=wY(I+1sJ=1sK))/
1 (4 o O¥HXHHY )
M = (UX(IsJ+2sK)=2e0FUX(IaJ+1sKIFUX(TsJoK) )}/ (HYX%2)
NN=( WYSLTsJ~=1sK)=2e0%WY (T oJaKIFWY{I 4 J+1eK) )/ (HYX%2)
GO TO 644
359 Fl WY{(1edHr1laK)=WY(IsJ=19K)})/ (2eQ¥*HY)
G=( UX(IsJ+1sK)= UX{IsJsK))/(HY)
B=( UX{I4+1sJsK)= UX(IsJeK))/(HX)
C=( WY(I+1sJeK)= WY(IsJsK))/(HX)
M= ( UX(TsJ+2 sK)=2e0¥UX(T oJ+1sK)+UX(IsJsK) )/ (HY®%2)
NN=( WY{(]lsJ=1sK)=2eO0¥WY(IoJoK)+WY(IsJ+1eK))/(HYR%2)
E=(WY(I+1 o+l oK) =WY{ToJ+1oK)=WY(I+19J=1sK)+WY (L9 J=19K) )/ (2%HX*HY)
L=(UX(I+1sJ+1 oK) =UX{ Lo Jt1 oK) =UX{I+1oJsKI+UX(IoJoeK) )/ (HX*HY)
GO TO 644
343 Fa( WY(1sJ+1oK)=WY(IsJ=19K))/(2e0%HY)
G= ( UX({IsJ+1sK)=UX{IsJsK))/{HY)
B (UX(I+1sJ9K)= UX(I=1aJsK))/(2e0¥%HX)
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C2(WY(I+1eJsK)= WY(I=1sJsK))/(2e0%HX)
L(UX(I+1 9041 sK)=UX{I=19J+1sK)=UX{I+1sJsK)+UX(I=19JsK1 )/ (2#HX¥*HY)
E=(WY (T4 941 sK)=WY (1= o J+1 oK) =WY (I +19JsKI+WY(I=19JsK) )/ {2%HX®HY)
M={ UX(I1sJ+2 9K)=2e0¥UX{(I1sJ+1eK)+UX(IsJsK))/(HY%%2)
NN=( WY{IsJ4+2 sK)=2e0¥WY (1o J+1oK)+WY(IsJsK) )/ (HY®%2)

644 PH = L UX{TeJdsK) = 240%UX{IeJsK=1)+ UX(IsJsK=2)) /
1 (HT*%240) }
. IF{ ABSF(PH) -~ TOLP ) 6441y 6441, 6442
6441 PH = 040
6442 PS={ WY(IsJsK=2)=24 O*WY(I;JaK l)+WY(I,J’K))/(HT**2)
IF{ ABSF(PS) - TOLP) 6443, 6443, 6444
6443 PS= 040
6444 EX{IsJsK)= B —{(1e0/240)%((BX*2)+( *%2))

EEX= ABSFIEX(IsJsK}))
IF( EEX = TOLP) 9444, 94444 9445
444 EEX= 00
9445 DDM= AP1+ (AP2¥EEX)+{ AP3#(EEX%*#2) )+ (AP4¥ (EEX%*%3) )+ (AP5S* (
1 EEX%#4) )+ (AP6*(EEX*%*5) )+ (APT* (EEX*%6) )
IF( DDM) 4948,49484+4949

4948 DDM= 25,
4949 PNU=CP1+(CP2¥*EEX)+(CP3% (EEX*%2) )+ (CP4* (EEX¥%3) )+ (CPS* (ELX¥%4))
IF( PNU) 7565 7565 9875
9875 IF( PNU = 0e49) 755, 756s 756
756 PNU = 0449
755 VEM={ PNU¥DDM)/ ((1eG+ PNUI¥(1e0=2e0%*PNU))
SHM = DDM / { 240%(1e0 + PNU))
DM = 260% SHM
VOR = (VEM +DM )
VSR = (VEM + SHM)
3616 GO TO ( 14s 155 16) » JB
14 IF (J=2) 3006s 30065 3002
3006 REX(IsJsK)= VOR¥(A*(140~5) = CH¥D)+VSR¥ (E*(1e0-F) =G¥*L)+
1 SHM* (M* (1e0=8) =NN*C) — PH¥RHC
REY(IsJsK)=(1e0/HY)*(VDR*¥(F=(140/260)% ((FR¥2)+(G*%2)) )+
1 VEM® (B —(1aU/2e0)% ((B**2)+(CH%¥2) ) ) =51 v IsJ=1sK))+SHM*
2 (L¥(140-8) —A%G +D*(1le0=F)=E%C) —RHO¥(PS)+ PHO
IF( KIESI) 111s 505111
3002 IF ( J = JSS1) 8uSs 803, B0O
868 REX(IsJsK)= VOR¥{A*(lay—£) = C*¥D)+ysR¥(E*(1e0=F) —G*L)+
1 SHEM* (M%(140-B)=NN#C) — PH*RHO
REY (15JsK)=VDR* (NN*(1e0=F ) =G¥M) +VSR¥ (L% (1o 0=5)~CHE )+
1 SHM* (D% (1eU-F )= G¥A)=(PS*¥RHO)+ PHO
IF( KTESI) 111» 50s111
8u9 IF ( I-2) 810, 810, 811
810 IF( LB) 811, 181us 811
1810 REX(IsJsK)=( 1e0/HX)*(VDR*(B=(1e0/26 0)*((8**2)+(C**2)))+
1 VEM* (F=(1aU/2eU) ¥ ( (F¥%2)+(GX¥¥2)) ) ) +SHM* (M¥ (1eC=B) - L*G+
2 E*#(1e0=F) =NN¥C) = RHO*PH
REY(T19JsK)=VDR¥ (NN#(1eu~F ) =G*¥M)+VSR* (L¥(1e0=B)~C¥E)+
1 SHM* (D#*(1e0=F )~ G*A)=(PS¥RHO)+ PHO
IF( KIESI) 111y 505111
811 REX(1sJsK)= VDR¥(A%(1e0=5) = C*D)+VSR*¥(E¥(1e0-F) —G*L)+
1 SHM* (M*(1a0=8 ) =NN*C) = PH¥*RHO

REY(1aJsK)SVORK(NN¥(1eCQ=F )=G¥M)I+VSR* (L ¥ (1e0—b)=~CHE )+
SHM¥(D¥* 1 leu—F )= G#A)=PL¥RHO)+ PHO

b



821
823

Ny =

829

IF¢

IF
IF

IF{
IF

1F ¢
IF(

IF(
IF
IF

LF Y
IF

IF(
IF

IF¢(
IF«

IF(
IF

IF Y

128

KTEST) 111, 50,111
REY{1sJeKIZSVDOR¥(NN¥(1eQ~F )=G¥M)+VSR¥ (L¥(1leD~1)—C*E )+
SHM¥(D*#(lew=F )= G*A)= P_*¥RHO)+ PHO
{ 1-2 ) 812, 812y 815
(J = JS4) 813y 813,814
REX(IsJsK)={ 1eO/HX)#(YDR¥(B=(1e0/2e0)1 ¥ ((BHX2)4+(*%2) )+
VEM* (F=(1e0/2eu) ¥ { (F®¥2)+(G¥%2)) ) )+oHM*E M* (ley~B) - L*¥G+
E*¥(1ls0-F) =NN#C) -~ RHO*PH
KTEST) 111, 50,111
(J=JSS1) R15, B154816
REX(IsJsK)= VDR¥(A¥(leyu—D) — CH¥D)+yoR¥({E¥(ley~l) =G¥L)+
SHM#* (M3 (1 e0-B)=NN#C) ~ PH*¥RHO .
Kitor) 111, 505111
LB) 815y 181l6s 815
REA(I»sJaKI=1 1oeu/HAI¥ yDR¥(Be(loeu/2eu) ¥ (B¥X2)+CX%2)) )4+
VEM¥(F={1e0/20)%¥((F¥%2)+(G¥%2) )} ) )+SHM* (M* (1leQ-B) ~ L¥G+
E¥(leyu—F) —=NN¥C) - RHO*PH
KTEST) 111y 505111
vI-2)  82u.82us821
(J=2) 822,822¢823
REX(IoJdsK)=t 1leu/HX)#(VDR¥(B=t1leU/2e0)HF L (BFH2)H(CH%2)) 1+
VEM# (F=(1e0/2e0)%((FX*%2)+(OG¥%2) ) ) )+SHMK (¥ (Lle0=8) — L*G+
Exvleu=F) =NMN®C) = RHO*PH
REY(I aJaK)=[1eO/HY )X (VDR¥(F=(140/260Q)¥ ((F*#2)+(E*%2)) )+
VEMI (B =1 1leu/2eyul ¥ (1 B¥%2)+CXX2) ) )=l v i lad=1eK )} )+sHi*
(L*¥(1eU~B) =A¥G 4D¥*(1e0-F)=Ex*C) ~RHO*(PS)+ PHO '
KigEst) 111, ‘5uslll
(J=JS4) 824 e8B244875
REXGT9JaK)=U leu/HX)IF(yDR¥ (B~ ley/2eul %1 BFX2) 4+ Cx%2) ) )+
VEME(F=(1e0/2 Q)% { (FHE2)+(uH*%2))))+5rM* (Mm% (le0~b) — L¥GH+
E¥(leuU=F) =~NN¥*¥C) — RHO*PA
REY{I9JeK)=VOR¥(NN¥*{1eO~F)=G¥MI+YSR*(L*(1eaC—B)~CHL)+
SHMFLD® v lev—F )= G¥A)= P_L¥RHO )+ PHO
KTEST) 111 509111
{J = Jonl) BZ69826s 827 .
REX({IsJeK)= VDR¥(A*¥(1e0-B) — CHUIFVSR¥(EX(1e0-F) ~G*L)+
SHM® (M¥ (leu—d)=NRN*C) = PH®*RHU
REY(I 9JaK)=VDR¥(NNH* (] ¢ O~F)=GH*M) +VSR¥(L¥ (Lo 0= ) ~CHE )+
SHM* (D¥*(leu=F )= G¥A)=(Pu*RHO}+ PHO
KTEST) 111y 509111
LB) 826, 1827, 826
REX(IoJsK)I=( 1e0/riX) ¥ (VDR¥(P=~(1e0/2e0Q)¥((p¥*2)+(Tk%x2) 1))+
VEMIIF~(1leU/2eu ) ¥ U AF®H¥2) 4+ 0%%2) ) ) )+oHM¥* (¥ Tey=B) = L¥G+
E¥(le0—=F) =NN*¥C) ~ RHO%*PH
REr 11 eJsK)=VDR¥ (NN%*, leu~F)=G¥M)Y+y  R¥* (L¥y Leyu=)=C¥t )+
SHM¥ (D¥(leU-F )= G*A)~(PSHRHO)+ PHO
KIESTH) 111 5Uslll
{( J = 2) 828s 828, 829
REX(I sJdsK)= VDR*(A¥,leu~B) = CHED)+yoR¥(E*{1ley~F) =C¥L)+
SHM#* (M¥*¥ (1 40=3)~NN*C) - PH*RHO
RETvIodsK)=lal,/ HY ) #  yDR¥ [ F=~{le /2 )%, F¥¥2)4+(0%¥%2) )1+
VEM¥ (B —(1eU/2e0)# ((B*¥214+(CH¥2)))=STY(1sJ=1sK) ) +5HMH
(L¥(leu—=B) =~A%G 4D% 14 ~F)=E*C) =RHU*PL)+ PHG
KTEST) 111s 50,111
REALTsJsK)I= VDR#F{A¥ (leu—0) =~ CHD)ALLR¥ (E®({1au=F) =G%L)+



111
50

5061

5063
5062

7708
5005

TuL5

9262

214

7008
7018
76120

7029
7049

7039

7419
70121
722
7025

129

1 SHM* (M* (1eu=B)~-NN#C) - PH#*RHO
REY(I19JsK)=VDR¥ (NN#(1eQ~F)=G*¥M)+VSR¥(L*(1e0~)~CHE)+
1 SHM¥* (D®{1leu~F )~ G*¥A)= PL#RHO)}+ PHO

IF{ KTEST) 111, 50,111

REAtI9sJsK) = REXIsdsK) +  PHO
REY(IsJsK) = REY(IsJsK} = PHO
CONTINUE
IF( KASE) 5061y 50629 5061
PRINT 5wvu
DO 5U63 I = 2 » MX
DO 5ue3 J o= Jil s Jdol
PRINT 6U0lslsJsKeUX(IoJeK)sWY (I sJaK)sREX(1sJsK)sREY(1sJsK)
CONITINUE
DO 5005 1I= 2. MX
DO Svub J = JlIyv s JOUI
IF( ABSF{ REX(1sJsK)) ~ TOL ) 5005 50059 5007
CONTINUE
Do 7005 I = 2, MX
DO Twud  J = Jia e Jol :
IF( ABSF( REY(IsJsK)) -~ TOL ) 7005s 7005 s 7009
CONiINUE
IF( LTEST) 9262496299262
PRINI 9363
DO 9464 1 = 2 4 MX
DO 9464 J = Jaa » JoI
PRINT 9565 s 1 sJsKsREX(T9JsK)s REY(IsJsK)
CONI1INUE
PRINT 12172
PRINT 1uv54
————— - COMPUTATION OF STRESSES
FORMAIL 14x,73HCOL RCw K o IGMAA o IGMA TAU
1 XDIsp YDISP )
DO 51ub I =1 s Ma
DO 5105 J = JSS s JSS1
GO 10 ( TuuBs Tu99s Tu99) 5 JB
IF( I = 1 ) 7018y 7018s. 7019
IF( J = Joo) Tul2es 70120, 7029
VEM= 040
D.M= veow
SHM= 00
GO 10 7Tul2s
IF( J = JSS1 ) 7TuU49 4 7049 70120
Gz { X IlsdsK)= UXIT . J=-1.K))/iHY)
F= ( WY(TeJoK)= WY({IsJ=1sK))/(HY)
B=  uatl+lsdsK) = UarvIsdsK)), (HA)
C= ( WY(I+1sJeK) = WY{(IeJsK))/ ( HX)
ExilsJdsK)= B =(leu/2eu)¥(B¥%2 4+ (C¥%2 )
GO TO 70123
IF( J = Jss)  70l2us 70120, 70121
IFC J = J5S1) 7022s 7023s 7024
G= | = Xilsd=1:Kl+ _o . 1 J+1.K))/ 2« %Hy)
B =UX({I=19JsK )+ UX(I+1sJsK))/ ( 2+0%HX)
C=  =a¥ I=1.d.K) + 0 I+41 . J.K))/ « 2e _®HX)
F= ( WY(TeJ+1leK) = WY(Isd=1sK))/ ( 2e0%HY)
GO 10 7ul23 :
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7023 G= ( UAatlsJsK) = UXilsJ=1,K))/(HY)
GO TO 7025

7024 IFv J = Jsu2 )Y 7124, 7124, 7022

7124 G= { UX(TaJ+lsK) =~ UX(IeJsK))/Z(HY)
GO 10 7u25

7099 IF{ I-1 ) 7090+ 7090y 7089

7090 IFe J = Job ) 70120, 7012, 5 7.92

7092 IFL J - JUSS) 7091s 7091y 7029

7091 G= L UX(IsJ+1,K) = Un(IsJsK)I/iHY)
GO TO 7039

7989 IFC J = U4 )y Tul21s 7623 5 7098

7098 IF( J = JSS) 71249 7124 s 70121

70123 EEx= ABSF( EA1I4J9K)}

DDM= AP]1 +(AP2XEEX)+(AP3*(EEX*%#2) )+ (AP4*(EEX*%3))+(APS*
1 EEX*%4) )+ APG6* (EEXA¥¥%5) )+ (AP T#* (EEX*%6) )
IF( DDM) 4944,494444945

4944 DDM= 25,
4945 PNU=CP1+(CP2¥EEX)+(CP3* (EEX*%2) )+ (CP4* (EEX®¥3) )+ (CPS* (EEX*%4) )
IF¢ PNu ) 758, 758, 1758
1758 IF( PNU - 0e49) 757y 758 758
758 PNu = vet49
757 VEM={ PNU%¥DDM)/ ((1e0+ PNU}I*(1.0-2e0%PNU})
oHM = DDM , | 2el%[{le. + PNLU))

DM = 2¢0% SHM
VDR = (vEM +DM )
VSR = (VEM + SHM)

706125 Ev= F ~ (leu/2eul)%( Fx#2 + G¥*2 )
EXY=( G+C)—~(G#B)—(F*(C)
S>TGMAY = VEM® (B, I,JKI+EY ) + DM*¥E;
REX(19JsKISVEM¥(EX(IsJsK) +EY) + DM*¥EX(1sJsK)
TAu = oHM ¥ Ean

PRINT 106919 JsKsREX(IsJoK) e SIGMAY 9 TAUSUX(1aJdaK)sWY (I sJeK)
106 FORMAIW15A91251ns 12,00 ,12:2X . E1_ e3.2:,E1.e3:3 4 :E10e3:2,05E1,0332,E
11G¢3 )
51u5 CONTINUE
I =1
Joo3 = Jool -~ 1
PRINT 6104

6104 FORMATI1UXs77HICIAL HORIZe. FORCE ON PLAVE {LB) TIME{GEC)
1 MOVEMENT OF THE PLATE )
6lv7 SUM F Vv
DO 6103 J = JSS, JSS3

SuM= SUMFILIREALTLsJsK)+ REALTIsJ+15K) 1/ 200 ) ) #HY
6193 CONTINUE
SUMF= SuM#*pb
TT =(K - 2 ) ¥ HT
PRINT 6106 o SUMFs 119 UXxt1ls1sK)
6106 FORMATI( 25X9E10e3915X9E10e3915X9E10e3 )

IF( SuMF - suM ) 67415 1010, 1.10
6701 SUMT = SUMF
K=K+ 1
IF ( K= MTP3) 961 + 961y 1111
961 IF( 1ikst } 8962y 8BG61l, 8962

8962 READ 24U, MY 5 MmY
S JSS = MMy +1
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J&S1 = JSsS + MY
JS2 = JSS1 + MMY
JS& = Jdoo- 1
JsI = Js2 - 1
JTIT = 2
1 =1
DO 2119 J = JosSs Joosl
READ 1277 s UX(IsJsK) 5 WY(I4JsK)

2119 CONTINUE

1111 PRIN' 1212

GO TO 8961
GO TO 1010
It =1 % Ji = J
GO TO 5009
FDX = (el * ABoF(REA:I5J5K))
IT=1 % 47 = J
MN = laev
ITER= 140

LF( KOLE) 6101y 6us 61ul

6101 PRINT 681

4946
4947

1760
760
759

5016
6413
6415
6416
5011
5501

5502

5088

—— LIGUIDATION OF x REUIDUALL

DO 51 I = IT » MX
DO 51 J = Jls Jol

IN= [+1
INlL = I-1
JN = J +1

JN1 = U - 1
EEX= ABSF( EX(1sJsK))
DDM= AP1+ (AP2¥EEX)+( AP3¥ EEA®%2) )+ AP4* (EEX*%3))+{AP5SH*,

1 CEEX®%4) )+ (AP6* (EEX#%5) )+ (APT* (EEX%%6) )

IF( DDM) 49464494654947

DDM= 25,
PNU=CPL1+(CP2*EEX )+ CP3*¥ {EEA#*2) )+ i CPA4R (EEA*¥3) )+ (CPO* EEA®¥*4) )
IF{ PNU } 760y 760s 1760
IF{ PNU - ue49) 7595 Tb6us 760

PNU = 0e49

VEM=( PNU¥DDM), (1leut PNUI*{le(=2e ¥PNy))
SHM = DDM / ( 20%(1le0 + PNUJ)

DM = 260% oHM

VSR = (VEM + SHM)

VDR = (VvEM +DM )

IF( JTEST) 5016 » 5011s 5016
IF(C I ~-1iT1) D5ully 6413,6416
IF( J = JTT1) 5011y 51, 6415
IF{ J - Jit2) 51s 51s 5011

IF( I = ITT2 ) 6413s 6413, 5011
IF{ K = 3 ) 5501s 5501 9 5502
DELPX= ~ REX(IsJaK)}/((=2e0#VDRIH¥((1e0/ (HX#%2))+(ShM/ VDR

(HY*%2))))) ,
DELRX= DELPX¥(( =2e0%VDR)*((1e0/ (HX%¥2))+(SHM/ (VDR (HY

*¥%2)))))

GO TO 5014
DELPA= = REAILJsK), L =2 ¥ DRI¥ {le,, it #%2) )+  _HM/\,DR*
(HY*%2)))) = (RHO/ (HT#*%2)) )

DELRX= DELPA¥{t —=2eU%vDR)I¥{(lausiHaA¥*2))+{oHM/ (vDR¥*(hY
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1 *¥%2)))) = (RHO/({Hi¥*%2)) )
5014 UX{IsJdeK) = UX(IsJeK) + DELPX
2259 IF( JB = 1 ) 2257y 2257, 2258
2258 1F( J = JS4 ) 2454 24544 2257
2257 IF( J = J551 ) 22H6y 2256 s 2454
2256 IF( ABSF{ UX(IsJsK)) =ABSF( UX(1=19sJsK)) Y2454 2454, 2255
2255 REX({IoJsK)I= UeB%* REX T sJsK)
UX{IsdsK) = UX(1lsJsK) -~ DELPX
IF({ ABSF({ REXx(Is¢JsK)) - jOL } 24545 2454, 5411
2454 REX(IsJsK) = REX(I9JsK) + DELRX
IF (1-2) 53y 539 55
53 DELRX1 =DELPX#VDR¥((1eQ/(HX*¥%¥2) )= 10/ (2e0¥ (HX*%3)))
REX(CINsJoK)= REAVINIJOK) + DELRAL
GO TO 54
55 IF (1 = MX) 555, 556, 556
585 DELRX1 =DELPX*VDR¥({(1eQ/(HX¥%2) )= 1eQ/(2e0¥ (HX¥%3)))
REXTINsJsKI= REALINIJsK) + DELRAL
556 DELRXZ2 =DELPX®¥VDRH*¥{((1e0O/(HX¥¥Z) )+ 1eQ/(2e0%(HX¥*%3)))
REXAINLSsJsK)= REAVINISJSK) + DELRAZ
GO TuU 54
54 IF | J -2 56 9 56 9 HT
56 DELRX3 = DELPX¥ SHM*( 160/ (HY*%2))
REX{ Lo JINsK)= REALTI 9 JINsK) + DELRA3
G0 TO 51
57 IF 0 =Jsl )} 566 4 588 4 51
566 DELRX3 = DELPX% SHNM*( 1e0/(HY%*¥%2))
REA(TI9INsKI= REAI o JNyK) + DELR,3
58 DELRX4 = DELPX%® SHM*( 1eU/{HY*%2))
REXTTsINLsK)= REA(I»IN1-K) + DELRAG
GO T 51
51 CONTINUE
PO 511 T = 24 MX
CO 511 J = Ji1s Jol
IF( AESF/{ REX(IsJsK)) — FDX ) 512 » 512 s 513
513 In = 1
JT = J
IHER = TiER +1
IFC ITER = IM) 60Uy 60s 512
512 IF( KOLE) 5uu2s 511y 5002

5002 PRINT 68y IeJdsKs REX(I9JaK)e ITERe UX{TeJsK)
511  CONTINUE
GO TO { 650 9 601 +632 ) » JB

600 DO 249 I = 1.MxP1

UX(1914K) 2¢0 ¥ UX(I192sK) = UX(1s3sK)

WY (1slak) 2eu % wyils2,K) = wi.1,3,K)
249 CONTINUE

IT (JU55=1) 602y 6U2s 6U3

Hu3 DO 604 J = 2y JS54

UX(1eJsK) 20U ¥ Ux{2sdsK) = UA135J.K)

wY{(1sJsK) 20 * Y (29JdsK) = WY (3sJsK)
6u4 CONTINUE

GO0 To 602

6Ul DO 3448 J = 1 » Jub

JX{1sJsK) e # UX(29dsK) = UX(34JsK)

UX{1sJdsK) 2eu ¥ UATZ29JeK) = UAa3sJsK)

{I
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3448 CONTINUE X
602 DO 3449 J = JSS2 ¢ JSI
WYt1leJdsK) = 260 * LY I{23J3K) = Y 133J5K)
UX(19JeK)= 2.0%UX(29JsK)=UX(39JsK)
IF t LB ) 9884y 3449, 9884
9884 UXt T9JsK) = 040
WY T9JdsK) = Vel
3449 CONTINUE
Cm—mmm—m——— COMPUTATION OF NEW Y RELIDUALG
DO 507 I = 29 MX
DO 507 J = JTT » Jol
EEX= ABSF( EX(IsJsK))
8445 DDM= AP1+ (AP2¥EEX)+( AP3* (EE(%%2) )+ AP4* (EEX*¥3) )+ (AP5S%|
1 EEX®%4) )+ (APG¥(EEX%XS ) )+ (APTR(EEX®*E)) ’
IF( DDM) 4940,494uUs494]

4940 DDM= 25,
4941 PNU=CP1+(CP2H#EEX)+(CP3#(EEX*¥%2) )+ CP4* (EEA%%¥3) )+ (CPS* EEA¥%4))
IF{ PNU) 762, 762y 1762
1762 IF(C PNU = Ue49) T761s 761y 762
762 PNU = 04469
761 VEM=1( PNU*DDM)/ ((let PNU)I¥{le0=2e *¥PNU))
SHM = DDM / ( 20%¥(1e0 + PNUJ)
DM = 260% 5HM
VDR = (VEM +DM )
VSR = (vEM + SHM)
IF{ JTEST) 1012 » 8412 s 1012
1012 IF(C I -1171) 8412 8413y 8416
8413 IF( J - JTT1) 841Zy 5079 8415
8415 IF( J = J112) 507s 5u7s 8412
8416 IF( T - ITT2 ) 8413, 8413 ’ 8412
8412 UX(IsJdsl) = =Un(lsJse3)
WY(Ioedel) = =WY(IsJs3)
leul2 A = (UX(I=13J9K) = 26U % UAilsdsK) +Ual+13J9K) )/ HA¥¥2ey)
IF( J - JSS1 ) 88U2s 8802 4102
8802 GO 10 G102y 422 43025 44,2, 45,25 46.2: 47.,2.48.2), Kb
4202 WY{ 19JsK) = 0el5% WY(2sJsK)
GO TO 4102
4302 WY( 1sJsK) =0e3 * WY (2+JsK)
GO TO 4102
44G2 WY( 1sJeK) =045 * WY(29J3K)
GO 10 4102
4592 WY( 1leJsK) =0e6C ¥ WY(2+JsK),
GO 10 41u2
4602 WY( 1sJsK) =0e75 ¥ wY{2eJ9K)
GO TO 4102
4702 WY( L1eJsK) =090 *¥ WY(2sJ9sK)
GO 10 4102
4802 WY( 1lsJsK) = WY(29JsK)
41u2 D = (wY(I4+19JsK) 4+ wyilI=1sJ5K) =260 ¥ wi'IsdsK)), (HA¥%2)
1403 CO TO ( 4069 54849 407 ) s JB
407 IFC J -~ Jit ) 4071 5 4471 5 5484
4071 IF (1 - 2 Hb59 ¢ 559 9 5435
5484 IF( J = Js4 ) 7344 o 5424 5 6406
6406 IFt J = Jss ) 543 ¢ 543 s 548

7344 IF I - 2 ) 7345 s 7345 5 544 .
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7345 F=( =WY{LsJ=1sK)+W Y IoJ+1sK) )/ (2eu¥%H()
G=(=UX(I9J=19K)+UX(IsJ+1sK) )/ (240%HY) -

Bt UA(I+1sJsKi=un{losdsK))/tHX)
C={ WY(I+loJsK)= WY(IsJaK))/(HX) )
L=(UX(I+19J+1sK)=UX (I 9d+1oK)=UX 1 I+19d=19K)+UAilsJ=19K) )/ (2¥HX*HY)
E= (WY (I419J+1sK)=WY (1 9J+1aK)=WY(I+1sJ=loK)+WY(IsJ=19K) )/ (2¥HX*HY)

M2 lUXIT pd=19K)=2e5¥UA(TsJdsKI+Unilpd+lsK) )/ (HY¥%2)

NN= (WY (19 =15K)=2e0%WY (ToJsK)+WY (IsJ+19K) )/ (HY*%2)

GO TO 744
5424 IF(I=2) 5425 » 5425 4 542
5425 F={ WY(IsJ+1sK)=WY{IsJ=19K))/{2a0¥*HT()

G=( UX(IsJdeK) =~ UX(IsJ=1sK}}/(HY)
B=( UX(I+1sJsK)= UXtIsJsK} )/ iHR)
C=( WY(I+1sJsK)= WY(I9eJsK))/(HX)
L = { UX(I+1oJdsK)=UX(I4+10J=1sK)=UX(TaJsKIFOAtIsJ=19K) )/ (Hx¥HY)
M = (UX(I9J=29K) =2e0%¥UX(IsJ=19K) 4+ UX{(IeJsK) )/ (FiY¥%2)
NN = (WYt1led=2sK) =2eu#Wi IsJ=1,K) + 4iilsadsK))/Hy¥%2)
C WY(I+1oJsK)=WY(I4+1eJ=1sK)=WY{1sJsKIF+WY(IsJ=1sK))/{HXH*HY)
GO TO 744
406 IF{ J = JUSS ) 543 » 543 4 548
548 IF(J=J551) 54435424549
544 F={ WYLToaJd+1lsK)=WY(Iod=1sK))/(2e0%HY)
Gz (=UX(TsJ=19K)+ UXtIsJ+1sK))/(2e0*HY)
B (UX{I+1sJsK)= UX(I=19JsK))/(2e0%HX)
C=qwYtI+1loJsK)= wy{I=1,JsK)}, (2eu*HK)
(UX(I4+19J+1sK) = UX(I=1oJd+19K) +UX(I=19Jd=1sK) =UX(I+1s
=1sK) )/ {4 e OXHX%HY )
(UXL{Tod=1sK) = 2e0%¥UX(IsJsK) + UX(IsJ+1sK) I/ (HY%¥*2e0)
(WYX Lgd=1oK) = 2eu¥dnuiIsdsK) + ay lsd+1lsK) ), (H%%2ey)
(WY (I41sJ+1sK) — WY(I=1aJ+1sK) + WY{I=1sJ=1sK) =~ WY
1 I+1sU=1sK)) /7 (GeU¥HA¥H,) N
GO TO 744
- 542 Fe{ WY(IsdtleKi= ¥y (led=1sK))/i2eu¥H1)
G={ UX(IsJaK)= UX(I9Jd=1sK))/(HY)
B= ( UX(I+4+1sJsK) = UxtI=1sJsK) 1}/ (2eU%HA)
C= { WY(I+1oeJsK) = WY(I=LleJsK))/(2e0%HX)
L{UX(TI+1odsKI=UX{I=1oJoKI=UXtI+]1oJ=1sK)+UXLI=1oJ=1sK) )/ 2%rA%ktY)
M= (UX{IoJ=29K)L2e0¥UX(I ad=1sK)+UX{1oJsK) )/ (HY*#2)
NN=( WY(IlaJ=1oK)=2eU¥wivIsJsK)+Wy{Iad+leK))/iHY#%2)
E= (WY{I+1aJ+1oK)=wWY{I=1ad+l oK)+ Y (I=1sJ-1eK)=WY(I+1sJ=1sK))/

E

o)
-
(W ]

M
NN

1 (4 e O¥HX¥*HY)
GO TO 744
549 IF( J-JS82 ) 1549+1549, 7344
1549 IF ( I=- 2 ) 559 9 559 4, 5435
5435 Fet wryilsdtloK)= wialod=1,K)),{2eu%H:)

G= { UX{(IsJ+1sK)i= UX(TsJsK))/(HY)
Bz ( UX(I+1sJsK) = UAtI=19JsK))/{2eu¥HA)
C= { WY(I+1sJsK) = WY{I=10JsK))/({2e0%HX)
E= (WY (T4l J+l oK) =Y (I=1od+1leK )4y il=1yJ=1sK)=pwriI+1lod=1,sK))/

1 (4 « OXHX*HY )

LE(UX(I+1ad4+1 oK) =UxtI=1od+lok)=un1I+1sJsK)+tuavdl=19dsK) )/ 2%HA%MY)
M = (UX(IsJ+29K)=260%UX(ToJ+1eK)+UX(TsJaK) )}/ (HY%*%2)
NN=t wrtlod=1sK)=2eu¥*nw i ladsKI+nV(IsJ+1sKY), H, #%2)

GO TO 744
559 Fe{ WY{TeJdtloK)=wY(IsJd=1sK)),/{2e(¥H, )
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( UX(Ied+1sK)= UXiIeJdsK))/(HY)
( UX{I+1oJeK)= UX{(IsJsK}))/{HX)
{ WYUI+1sJsK)= wrivlsedsK) )z HA)

Ma{ UX(TsJ+2 sK)=2e0#UX{IoJ+1sKI+UX(IoJsK) )/ (HY*%2)

NN=( wWY{(IsJ=lsK)=2euFwi 1 IsJsK)tnwiiIsJd+1lsK) ), Hy¥¥k2)
LE(UX(I+1sJ+1 oK) =UX(IaJ+1 oK I=UX{I+1sJsKI+UX(IsJsK) )/ (HXHHY)
E=(WY(I4+1sJ+1sK)=uyY t Tod+l oK) =wr «I+1laJ=1 9Kt Iad=1sK) )/ 2%H*Hy )

GO TO 744
543 F=( WY (Lod+loK)=r{IsJ=1sK))/{2eu¥H)

G= ( UX(IsJ+1sK)I=UX(IsJsK))/(HY)

B(UX(I+1sJsK)= UX(I=19JsK) )/ 2eu¥*HA)

CE(WY (I+1eJoK)= WY(I-19JsK)})/(2e0%HX)

L=(UX(I+1sJ+1 oK) =UXt11-1sJ+1 oK) =uarI+1sJsK)+tuasI=19JsK) ), 1 2¥HA¥F )
E=(WY (I+19J+1sK)=WY (i=19J+]1 sK)=WY(I+1sJsK)+WY(1l=19JsK) )/ (2%HX*HY)
M UXLTaJd+2 sK)=2eu¥uaTod+13KI+ua I sJdsK) ), (Hp#%2)
NN=( WY (TsJ+2 oK) =2e0¥WY (I s J+1sK)+WY (I sJsK) )/ (HY*¥2)

[N AN
tounn

T44 PH = 4 UX(TedeK) = Z2evFun(lsdsK=1)+ UailsdsK=2))
1 (HT%*%Z2e0)
IF( ABSF(PH) = TOLP ) T44ls T441s T442
T441 PH = 060
T442 PS=( WY(IsJeK=2)1=2e 0%yt lodsK~=1)+uylsJdsk) )/ aH]*%¥2)
IF( ABSF(PS) — TOLP) 7443, 7443, 7444
T443 P5= Gel '
T444 GO TO | 830s 831s 832)  JB
8§30 IF (J=2) LUDAsLLV6 s4L02
4UU6 REY(TeJaK)I=(1la/HY)H(VDR¥(F=(1e0Q/2 O)*((F**2)+(U**2)))+
1 VEMB (B =(leL/2e0)3% ((3%#2)+(CH¥2) ) ) =111 1lsd=1sK))+oHM*
2 (L¥(1e0U-B) —=A%G +D¥(1le0-F)—E#C) —=RHU*(PS)+ PHY
IF{ KTEST) 2229 B0Ts 222
4002 REY ([ 9JsK)=VDR¥ (NN¥{1eO=F ) =0U¥iM) +VSR¥(L¥ (1e Q- )=Cxi )+
1 SHM#(D*(Leu=F )~ G*A)= (PL¥RHO)I+ PHGT
IF( KTEST) 222¢ 507y 222
821 REY(1sJsK)=VDRF(NN¥ (1o Q=F ) =GRMI+VSRH¥(LF* (leyu—t)=CHe )+
1 SHM*(D¥(1eu~F )= G*¥A)=(PS*¥RHO)+ PHO
IF( KTESH) 222y 5uTs 222
332 IFC J - 2 ) Balhey Bhbse 345
B44 RmY(I’J,K)‘\IOU/HY)*\vDR*\F'(lquZ‘Q)*\\F**2)+(U*%2)))+
1 VEME(D =(1eu/2e0 )3 ((B%%2)4+(CH%*2)))=STY(LlsId=1sK))+S
2 (L¥(1e0U-B) —A%G +D¥(leyu~F)=E*xC) —=RHO*(Ps)+ PHO
IFt KTEST) 2229 507 222
345 REY (T 9JsK)=VDR¥(NN¥*(1leyu—=F ) =U*MI+voR*¥ (L¥*(1ley=3)—Cip )+
1 SHMA*(D*(1leu~F )= G*A)=(PS#RHO)+ PHO
IF{ KTEST) 222 507y 222
222 REX(I19JsK) REX{IsJsK) + PHO

REY (1sJ,sK)
5u7 CONTINUE
FDX = Cel ASFIRZIX{I9JsK))
IT=2 % JT = 2
5009 FDY = 05 % APSF « REY12s24K 1))
IF( KOLE)Y 7201, 72U 7201
72vl PRINT 9vil
————————— LIGUIDATION UF Y KESTLUALS
120 ITER = 1.0
t10] DO 72 I = 1ITs MX
DO 72 J = JTs JSI

RELY{T aJsK) = PHO

b3

C



4942
4943

1764
T64
763

8724
9413
9415
9416

124
7724

7725

727
3357
3358
3355
3351

3352
73
75

733
79

74
76

1

E

136

IN= I+1

IN1 =1 -1

JN= J +1

JN1 = J -1

EX= ABSF(EX(IsJsK))

DDM= AP1+ (AP2XEEX)+( AP3* (EEX*#2))+(AP4¥ (EEX*%3) )+ (APS*{

EEX#%4) )+ (APE* (EEX¥¥*5) )+ (APT* (EEX%*%6))
IF( DDM) 4942,494254943
DDM= 25,
PNU=CP1+(CP2*EEX)+(CP3#(EEX%#2 ) )+ (CP4* (EEX*¥¥3) )+ (CPS* (EEX¥%4) )
IF( PNU ) 764 764, 1764
IF( PNU = 0e49) 763, 7635 764
PNU = Ue49 '
VEM=( PNU¥DDM)/ ((le0O+ PNU)*(1le0~240%PNU))
SHM = DDM / ( 2e0%(leu + PNU))
PM = 2,0% SHM
VDR = (VEM +DM )
VSR = (VEM + SHM)
IF( JTEST) 8724y 724, 8724
IFC I = ITTL ) 724, 9413, 9416
IF( U = JTT1) 7245 72, 9415
IF( J - JTT2 ) 72s 72 5 724
IF( 1 ~ ITT2 ) 9413, 9413 » 724
IFC K = 3 ) 7724, 7724 » 7725
DELPY = - REY(IsJsK)) /((~2e0%VDRI*((1eG/
(HY*%2 ) ) +(SHM/ (VDR* (HX*¥%2))))) :
DELRY =DELPY F AN =~2eUXVDRIF*((1e(/
(HY#*%2) ) +(SHM/ (VDR* (HX%*%2) ) ) ))
GO TO 727 :
DELPY =( ~ REY(IsJsK)) /((=2e0%VDRI*((1e0/
(HY#%2 ) )+ (SHM/ (VDR* (HX#%2)))) —(RHO/ (HI#%2)) )
DELRY ' =DELPY * ((~2e0%VDR)*((1e0/
(HY#%2) )+ (SHM/ (VDR¥* (Hx%%2))) ) = ( RHO, (H{%%2)) )
WY (IsJsK) = WY(IsJsK) + DELPY
IF( WY(lsJsK)) 3358, 3352, 3352
IF( J = JSS1 ) 3355, 3355, 335%
LF(C ABSF( WY (IsJsK) )= mpsF wyilsd=15K))) 3352, 3352, 3351
REY(IsJsK)= Qe5% REY(IsJsK)
WYL1adsK)= WY(IsJsK) = DELPY
IF( ABSF( REY(IsJsK)) = TOL ) 3352, 724, 724
REY(1sJsK)= REY(15JsK) + DELRY
IF ( 1 -2 73 s 73 s 75
DELRY1 = DELPY*SHM*(leU/ tHX¥%2))
REY(IN sJsK)= REY(IN sJsK) + DELRY1
GO TO 74
IF (I-MX) 733, 79s 79
DELRY1 = DELPY®SHM*(1e0/ (HX%*%2))
REY(IN »JsK)= REY(IN 5J5K) + DELRY1
DELRY2 = DELPY#SHM¥(1e0/ (HX*%2))
REY(INlsJsK)= REY(INL1sJsK) + DELRYZ2
GO TO 74
IF ( =2 ) 76 s 76 s 77
DELRY3 = DELPY®*VDR*((140/(HY¥*%#2))=1e0/(2e0% (HY%*%3)))
REY(IsJN »K) = REY(IsJUN »K) + DELRY3

GO TO 72



17
797

78
72

87

89
90

855
5003
85

999

NA1l2

133

665
1197
1729
2260
2792
3324
3856
4388
4920
5452
5984

137

IF ( U =JS 1 ) 797 » 78 5 72 .
DELRY3 = DELPY*VDR*¥((1e0/(HY%%2))=140/(2¢0% (HY%*%3))})
REY(IsJN K} = REY(IsJN 1K) + DELRY3
DELRY4 = DELPY®VDR¥( {10/ (HY%%2))+1e0/(20%(HY®%3)))
REY{IsJN1 sK)} = REY(IsJN1 sK) + DELRY4 :
CONTINUE
DO 85 I= 2sMX
DO 85 J = JTTs JSI
IF( ABSF( REY(IsJsK)) - FDY ) 855 , 855 , 87
IT=1
JT = J
ITER = ITER +1
IF( ITER - IM) 89 89 » 700
GO TO 80
PRINT 94
GO TO 999
IF{ KOLE) 5003s 85s 5003
PRINT 92 » IaJdsKs REY(IsJsK)s WY(IsJsK)

CONTINUE
GO TO 700

CONTINUE
END
PROGRAM NASA1 s CE0511159

PLAIN STRAIN DYNAMIC PROBLEM

27139E+02-27222E404 13213E+06-32679E+07 41633E+08-25851E+09 613.

23875E-02 46T742E+00~19770E+02 29880E+03-14841E+04

' 20 1 1 3 E+Q0 1
12 6 47 54 E+00 18 E+00 5 E-04 15E-02 56 E-01 26

12 E+00
E-02 266 E-072 399 E-Q2° 532 E-02
E-U2 798 E-02 931 E-02 1064 E=-0Q2
E-02 1330 E-02 1463 E-02 1596 E~02
E-02 1862 E-G2 1995 E~-02 2128 E-02
E-02 2393 E-Q2 2526 E-02 2659 E-0Q2
£-02 2925 E=0D2 3058 E-02 3191 E-02
E-02 3457 E~02 3590 E-~02 3723 E-02
E-02 3989 E-02 4122 E-0Q2 4255 E-02
E-02 4521 [-02 4654 E-02 4787 E-02
E-02 5053 E-02 5186 E~02 5319 E-02
E-02 5585 E-02 5718 E-02 5851 E-02
E-02 6117 E-U2 6250 E-U2 6383 E~02



Read Identification 2
Start Read NPROB and 3
Identification
Is NPROB = 0 Yes

No

Print NPROB
and
Identification

Read APl - AP7
and CPl - CP5
Read Control
Parameters

Print IM, TOL, PO

v

to 8

End

60

138



Read MX, MY, MT
ALX, ALY, HT, RHO,
PHO, RATE, WD

139

Compute and Print HX, HY,
MXP1, MTP3

JB

!

10

to 14

Compute JSS, JSS1, JS2,
JSS2, JSI and JTT

11

No

CBl
cB2

o
(o]

Yes 12

to 13



e

Read Specified 13
Stresses

Y

Set Specified Stresses

to Zero 14
/
Y
15
No NTEST = 0 ? Yes
Y
Read Input Data 16

Uniform Displacements

17
No ITEST = 0 ? Yes

Read Input Data
Nonuniform
Displacements

l

to 19 to 20

18
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from 16

e

Read Input Data
for K=3 only

19

141

from 18

Yes

KPO = 0 ?

No

Print Input
Data

20

Set Boundary
Conditions

to 24

22



From 23

|

Set Initial Values of

Displacements as Equal to Those 24
of Previous Time Station
Do for all i, j 25
No JTEST = 0 Yes 26
|
Read ITT1, ITTZ2, 27
JTTL, JTT2
Set Zero Displacements 28
for ITT1l, ITT2, JTTL, JTT2
29

Compute REX, REY

to 30
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No

L]
o

KTEST

30

REX = REX + PHO
REY = REY - PHO

31

Do for all i, j

32

KASE = 0 ?

Print I, J: K’
UX, WY, REX, REY

34

Do for all i, j

33

To 36

35

End of Do 25

End of Do 32
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144

F

2

|REX| - TOL

Do for all i, j

\
to 52

|REY| - TOL

1

—
_@

LTEST = 0 ?

es ’
4,// to 58

Yy

Print I, J, K
and Final
Residuals

40

Do for all i, j

to 42



from 41

|

145

Compute Stresses

42

Print Stresses

43

i=1
Do for all j

44

Compute Total Load
on Penetrating Object
by Numerical Integration

45

Print Total
Load, rate of
Loading

to 47

46



From 36

Is Total Load Less or 47
No Equal Than Previous Total  Yes
Load at K-1
A
K = K+1 48
0 K - MTP3 +\ 49
No ITEST = 0 *;;:\ 30

to

Solve for Another Problem

to 23

_J

Read Input Data for
Next Time Station

51

Do for all i, j

52

146



From 52

Liquidate REX Residuals 53

No

KOLE =0

Yes >4

Print Liquidation
Processes

55

Do for all i, j 26
Compute New Values for REY 57
Do for all i, j 58
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Liquidate REY

59

Back to 28

148
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